javax.vecmath

Class Matrix4f

public class Matrix4f extends Object implements Serializable

A single precision floating point 4 by 4 matrix.
Field Summary
floatm00
The first element of the first row.
floatm01
The second element of the first row.
floatm02
third element of the first row.
floatm03
The fourth element of the first row.
floatm10
The first element of the second row.
floatm11
The second element of the second row.
floatm12
The third element of the second row.
floatm13
The fourth element of the second row.
floatm20
The first element of the third row.
floatm21
The second element of the third row.
floatm22
The third element of the third row.
floatm23
The fourth element of the third row.
floatm30
The first element of the fourth row.
floatm31
The second element of the fourth row.
floatm32
The third element of the fourth row.
floatm33
The fourth element of the fourth row.
Constructor Summary
Matrix4f(float m00, float m01, float m02, float m03, float m10, float m11, float m12, float m13, float m20, float m21, float m22, float m23, float m30, float m31, float m32, float m33)
Constructs and initializes a Matrix4f from the specified 16 values.
Matrix4f(float[] v)
Constructs and initializes a Matrix4f from the specified 16 element array. this.m00 =v[0], this.m01=v[1], etc.
Matrix4f(Quat4f q1, Vector3f t1, float s)
Constructs and initializes a Matrix4f from the quaternion, translation, and scale values; the scale is applied only to the rotational components of the matrix (upper 3x3) and not to the translational components.
Matrix4f(Matrix4d m1)
Constructs a new matrix with the same values as the Matrix4d parameter.
Matrix4f(Matrix4f m1)
Constructs a new matrix with the same values as the Matrix4f parameter.
Matrix4f(Matrix3f m1, Vector3f t1, float s)
Constructs and initializes a Matrix4f from the rotation matrix, translation, and scale values; the scale is applied only to the rotational components of the matrix (upper 3x3) and not to the translational components.
Matrix4f()
Constructs and initializes a Matrix4f to all zeros.
Method Summary
voidadd(float scalar)
Adds a scalar to each component of this matrix.
voidadd(float scalar, Matrix4f m1)
Adds a scalar to each component of the matrix m1 and places the result into this.
voidadd(Matrix4f m1, Matrix4f m2)
Sets the value of this matrix to the matrix sum of matrices m1 and m2.
voidadd(Matrix4f m1)
Sets the value of this matrix to sum of itself and matrix m1.
floatdeterminant()
Computes the determinant of this matrix.
booleanepsilonEquals(Matrix4f m1, float epsilon)
Returns true if the L-infinite distance between this matrix and matrix m1 is less than or equal to the epsilon parameter, otherwise returns false.
booleanequals(Matrix4f m1)
Returns true if all of the data members of Matrix4f m1 are equal to the corresponding data members in this Matrix4f.
booleanequals(Object o1)
Returns true if the Object o1 is of type Matrix4f and all of the data members of t1 are equal to the corresponding data members in this Matrix4f.
voidget(Matrix3d m1)
Performs an SVD normalization of this matrix in order to acquire the normalized rotational component; the values are placed into the Matrix3d parameter.
voidget(Matrix3f m1)
Performs an SVD normalization of this matrix in order to acquire the normalized rotational component; the values are placed into the Matrix3f parameter.
floatget(Matrix3f m1, Vector3f t1)
Performs an SVD normalization of this matrix to calculate the rotation as a 3x3 matrix, the translation, and the scale.
voidget(Quat4f q1)
Performs an SVD normalization of this matrix in order to acquire the normalized rotational component; the values are placed into the Quat4f parameter.
voidget(Vector3f trans)
Retrieves the translational components of this matrix.
voidgetColumn(int column, Vector4f v)
Copies the matrix values in the specified column into the vector parameter.
voidgetColumn(int column, float[] v)
Copies the matrix values in the specified column into the array parameter.
floatgetElement(int row, int column)
Retrieves the value at the specified row and column of this matrix.
voidgetRotationScale(Matrix3f m1)
Gets the upper 3x3 values of this matrix and places them into the matrix m1.
voidgetRow(int row, Vector4f v)
Copies the matrix values in the specified row into the vector parameter.
voidgetRow(int row, float[] v)
Copies the matrix values in the specified row into the array parameter.
floatgetScale()
Performs an SVD normalization of this matrix to calculate and return the uniform scale factor.
inthashCode()
Returns a hash number based on the data values in this object.
voidinvert(Matrix4f m1)
Sets the value of this matrix to the matrix inverse of the passed matrix m1.
voidinvert()
Sets the value of this matrix to its inverse.
voidmul(float scalar)
Multiplies each element of this matrix by a scalar.
voidmul(float scalar, Matrix4f m1)
Multiplies each element of matrix m1 by a scalar and places the result into this.
voidmul(Matrix4f m1)
Sets the value of this matrix to the result of multiplying itself with matrix m1.
voidmul(Matrix4f m1, Matrix4f m2)
Sets the value of this matrix to the result of multiplying the two argument matrices together.
voidmulTransposeBoth(Matrix4f m1, Matrix4f m2)
Multiplies the transpose of matrix m1 times the transpose of matrix m2, and places the result into this.
voidmulTransposeLeft(Matrix4f m1, Matrix4f m2)
Multiplies the transpose of matrix m1 times matrix m2, and places the result into this.
voidmulTransposeRight(Matrix4f m1, Matrix4f m2)
Multiplies matrix m1 times the transpose of matrix m2, and places the result into this.
voidnegate()
Negates the value of this matrix: this = -this.
voidnegate(Matrix4f m1)
Sets the value of this matrix equal to the negation of of the Matrix4f parameter.
voidrotX(float angle)
Sets the value of this matrix to a rotation matrix about the x axis by the passed angle.
voidrotY(float angle)
Sets the value of this matrix to a rotation matrix about the y axis by the passed angle.
voidrotZ(float angle)
Sets the value of this matrix to a rotation matrix about the z axis by the passed angle.
voidset(Quat4f q1)
Sets the value of this matrix to the matrix conversion of the single precision quaternion argument.
voidset(AxisAngle4f a1)
Sets the value of this matrix to the matrix conversion of the single precision axis and angle argument.
voidset(Quat4d q1)
Sets the value of this matrix to the matrix conversion of the (double precision) quaternion argument.
voidset(AxisAngle4d a1)
Sets the value of this matrix to the matrix conversion of the single precision axis and angle argument.
voidset(Quat4d q1, Vector3d t1, double s)
Sets the value of this matrix from the rotation expressed by the quaternion q1, the translation t1, and the scale s.
voidset(Quat4f q1, Vector3f t1, float s)
Sets the value of this matrix from the rotation expressed by the quaternion q1, the translation t1, and the scale s.
voidset(Matrix4d m1)
Sets the value of this matrix to a copy of the passed matrix m1.
voidset(Matrix4f m1)
Sets the value of this matrix to a copy of the passed matrix m1.
voidset(Matrix3f m1)
Sets the rotational component (upper 3x3) of this matrix to the matrix values in the single precision Matrix3f argument; the other elements of this matrix are initialized as if this were an identity matrix (ie, affine matrix with no translational component).
voidset(Matrix3d m1)
Sets the rotational component (upper 3x3) of this matrix to the matrix values in the double precision Matrix3d argument; the other elements of this matrix are initialized as if this were an identity matrix (ie, affine matrix with no translational component).
voidset(float scale)
Sets the value of this matrix to a scale matrix with the passed scale amount.
voidset(float[] m)
Sets the values in this Matrix4f equal to the row-major array parameter (ie, the first four elements of the array will be copied into the first row of this matrix, etc.).
voidset(Vector3f v1)
Sets the value of this matrix to a translate matrix by the passed translation value.
voidset(float scale, Vector3f v1)
Sets the value of this matrix to a scale and translation matrix; scale is not applied to the translation and all of the matrix values are modified.
voidset(Vector3f v1, float scale)
Sets the value of this matrix to a scale and translation matrix; the translation is scaled by the scale factor and all of the matrix values are modified.
voidset(Matrix3f m1, Vector3f t1, float scale)
Sets the value of this matrix from the rotation expressed by the rotation matrix m1, the translation t1, and the scale s.
voidset(Matrix3d m1, Vector3d t1, double scale)
Sets the value of this matrix from the rotation expressed by the rotation matrix m1, the translation t1, and the scale s.
voidsetColumn(int column, float x, float y, float z, float w)
Sets the specified column of this matrix4f to the four values provided.
voidsetColumn(int column, Vector4f v)
Sets the specified column of this matrix4f to the vector provided.
voidsetColumn(int column, float[] v)
Sets the specified column of this matrix4f to the four values provided.
voidsetElement(int row, int column, float value)
Sets the specified element of this matrix4f to the value provided.
voidsetIdentity()
Sets this Matrix4f to identity.
voidsetRotation(Matrix3d m1)
Sets the rotational component (upper 3x3) of this matrix to the matrix values in the single precision Matrix3f argument; the other elements of this matrix are unchanged; a singular value decomposition is performed on this object's upper 3x3 matrix to factor out the scale, then this object's upper 3x3 matrix components are replaced by the passed rotation components, and then the scale is reapplied to the rotational components.
voidsetRotation(Matrix3f m1)
Sets the rotational component (upper 3x3) of this matrix to the matrix values in the single precision Matrix3f argument; the other elements of this matrix are unchanged; a singular value decomposition is performed on this object's upper 3x3 matrix to factor out the scale, then this object's upper 3x3 matrix components are replaced by the passed rotation components, and then the scale is reapplied to the rotational components.
voidsetRotation(Quat4f q1)
Sets the rotational component (upper 3x3) of this matrix to the matrix equivalent values of the quaternion argument; the other elements of this matrix are unchanged; a singular value decomposition is performed on this object's upper 3x3 matrix to factor out the scale, then this object's upper 3x3 matrix components are replaced by the matrix equivalent of the quaternion, and then the scale is reapplied to the rotational components.
voidsetRotation(Quat4d q1)
Sets the rotational component (upper 3x3) of this matrix to the matrix equivalent values of the quaternion argument; the other elements of this matrix are unchanged; a singular value decomposition is performed on this object's upper 3x3 matrix to factor out the scale, then this object's upper 3x3 matrix components are replaced by the matrix equivalent of the quaternion, and then the scale is reapplied to the rotational components.
voidsetRotation(AxisAngle4f a1)
Sets the rotational component (upper 3x3) of this matrix to the matrix equivalent values of the axis-angle argument; the other elements of this matrix are unchanged; a singular value decomposition is performed on this object's upper 3x3 matrix to factor out the scale, then this object's upper 3x3 matrix components are replaced by the matrix equivalent of the axis-angle, and then the scale is reapplied to the rotational components.
voidsetRotationScale(Matrix3f m1)
Replaces the upper 3x3 matrix values of this matrix with the values in the matrix m1.
voidsetRow(int row, float x, float y, float z, float w)
Sets the specified row of this matrix4f to the four values provided.
voidsetRow(int row, Vector4f v)
Sets the specified row of this matrix4f to the Vector provided.
voidsetRow(int row, float[] v)
Sets the specified row of this matrix4f to the four values provided.
voidsetScale(float scale)
Sets the scale component of the current matrix by factoring out the current scale (by doing an SVD) from the rotational component and multiplying by the new scale.
voidsetTranslation(Vector3f trans)
Modifies the translational components of this matrix to the values of the Vector3f argument; the other values of this matrix are not modified.
voidsetZero()
Sets this matrix to all zeros.
voidsub(Matrix4f m1, Matrix4f m2)
Sets the value of this matrix to the matrix difference of matrices m1 and m2.
voidsub(Matrix4f m1)
Sets the value of this matrix to the matrix difference of itself and matrix m1 (this = this - m1).
StringtoString()
Returns a string that contains the values of this Matrix4f.
voidtransform(Tuple4f vec, Tuple4f vecOut)
Transform the vector vec using this Matrix4f and place the result into vecOut.
voidtransform(Tuple4f vec)
Transform the vector vec using this Matrix4f and place the result back into vec.
voidtransform(Point3f point, Point3f pointOut)
Transforms the point parameter with this Matrix4f and places the result into pointOut.
voidtransform(Point3f point)
Transforms the point parameter with this Matrix4f and places the result back into point.
voidtransform(Vector3f normal, Vector3f normalOut)
Transforms the normal parameter by this Matrix4f and places the value into normalOut.
voidtransform(Vector3f normal)
Transforms the normal parameter by this transform and places the value back into normal.
voidtranspose()
Sets the value of this matrix to its transpose.
voidtranspose(Matrix4f m1)
Sets the value of this matrix to the transpose of the argument matrix

Field Detail

m00

public float m00
The first element of the first row.

m01

public float m01
The second element of the first row.

m02

public float m02
third element of the first row.

m03

public float m03
The fourth element of the first row.

m10

public float m10
The first element of the second row.

m11

public float m11
The second element of the second row.

m12

public float m12
The third element of the second row.

m13

public float m13
The fourth element of the second row.

m20

public float m20
The first element of the third row.

m21

public float m21
The second element of the third row.

m22

public float m22
The third element of the third row.

m23

public float m23
The fourth element of the third row.

m30

public float m30
The first element of the fourth row.

m31

public float m31
The second element of the fourth row.

m32

public float m32
The third element of the fourth row.

m33

public float m33
The fourth element of the fourth row.

Constructor Detail

Matrix4f

public Matrix4f(float m00, float m01, float m02, float m03, float m10, float m11, float m12, float m13, float m20, float m21, float m22, float m23, float m30, float m31, float m32, float m33)
Constructs and initializes a Matrix4f from the specified 16 values.

Parameters: m00 the [0][0] element m01 the [0][1] element m02 the [0][2] element m03 the [0][3] element m10 the [1][0] element m11 the [1][1] element m12 the [1][2] element m13 the [1][3] element m20 the [2][0] element m21 the [2][1] element m22 the [2][2] element m23 the [2][3] element m30 the [3][0] element m31 the [3][1] element m32 the [3][2] element m33 the [3][3] element

Matrix4f

public Matrix4f(float[] v)
Constructs and initializes a Matrix4f from the specified 16 element array. this.m00 =v[0], this.m01=v[1], etc.

Parameters: v the array of length 16 containing in order

Matrix4f

public Matrix4f(Quat4f q1, Vector3f t1, float s)
Constructs and initializes a Matrix4f from the quaternion, translation, and scale values; the scale is applied only to the rotational components of the matrix (upper 3x3) and not to the translational components.

Parameters: q1 The quaternion value representing the rotational component t1 The translational component of the matrix s The scale value applied to the rotational components

Matrix4f

public Matrix4f(Matrix4d m1)
Constructs a new matrix with the same values as the Matrix4d parameter.

Parameters: m1 The source matrix.

Matrix4f

public Matrix4f(Matrix4f m1)
Constructs a new matrix with the same values as the Matrix4f parameter.

Parameters: m1 The source matrix.

Matrix4f

public Matrix4f(Matrix3f m1, Vector3f t1, float s)
Constructs and initializes a Matrix4f from the rotation matrix, translation, and scale values; the scale is applied only to the rotational components of the matrix (upper 3x3) and not to the translational components.

Parameters: m1 The rotation matrix representing the rotational components t1 The translational components of the matrix s The scale value applied to the rotational components

Matrix4f

public Matrix4f()
Constructs and initializes a Matrix4f to all zeros.

Method Detail

add

public final void add(float scalar)
Adds a scalar to each component of this matrix.

Parameters: scalar The scalar adder.

add

public final void add(float scalar, Matrix4f m1)
Adds a scalar to each component of the matrix m1 and places the result into this. Matrix m1 is not modified.

Parameters: scalar The scalar adder.

UNKNOWN: m1 The original matrix values.

add

public final void add(Matrix4f m1, Matrix4f m2)
Sets the value of this matrix to the matrix sum of matrices m1 and m2.

Parameters: m1 the first matrix m2 the second matrix

add

public final void add(Matrix4f m1)
Sets the value of this matrix to sum of itself and matrix m1.

Parameters: m1 the other matrix

determinant

public final float determinant()
Computes the determinant of this matrix.

Returns: the determinant of the matrix

epsilonEquals

public boolean epsilonEquals(Matrix4f m1, float epsilon)
Returns true if the L-infinite distance between this matrix and matrix m1 is less than or equal to the epsilon parameter, otherwise returns false. The L-infinite distance is equal to MAX[i=0,1,2,3 ; j=0,1,2,3 ; abs(this.m(i,j) - m1.m(i,j)]

Parameters: m1 The matrix to be compared to this matrix epsilon the threshold value

equals

public boolean equals(Matrix4f m1)
Returns true if all of the data members of Matrix4f m1 are equal to the corresponding data members in this Matrix4f.

Parameters: m1 The matrix with which the comparison is made.

Returns: true or false

equals

public boolean equals(Object o1)
Returns true if the Object o1 is of type Matrix4f and all of the data members of t1 are equal to the corresponding data members in this Matrix4f.

Parameters: o1 the object with which the comparison is made.

get

public final void get(Matrix3d m1)
Performs an SVD normalization of this matrix in order to acquire the normalized rotational component; the values are placed into the Matrix3d parameter.

Parameters: m1 matrix into which the rotational component is placed

get

public final void get(Matrix3f m1)
Performs an SVD normalization of this matrix in order to acquire the normalized rotational component; the values are placed into the Matrix3f parameter.

Parameters: m1 matrix into which the rotational component is placed

get

public final float get(Matrix3f m1, Vector3f t1)
Performs an SVD normalization of this matrix to calculate the rotation as a 3x3 matrix, the translation, and the scale. None of the matrix values are modified.

Parameters: m1 The normalized matrix representing the rotation t1 The translation component

Returns: The scale component of this transform

get

public final void get(Quat4f q1)
Performs an SVD normalization of this matrix in order to acquire the normalized rotational component; the values are placed into the Quat4f parameter.

Parameters: q1 quaternion into which the rotation component is placed

get

public final void get(Vector3f trans)
Retrieves the translational components of this matrix.

Parameters: trans the vector that will receive the translational component

getColumn

public final void getColumn(int column, Vector4f v)
Copies the matrix values in the specified column into the vector parameter.

Parameters: column the matrix column v The vector into which the matrix column values will be copied

getColumn

public final void getColumn(int column, float[] v)
Copies the matrix values in the specified column into the array parameter.

Parameters: column the matrix column v The array into which the matrix column values will be copied

getElement

public final float getElement(int row, int column)
Retrieves the value at the specified row and column of this matrix.

Parameters: row the row number to be retrieved (zero indexed) column the column number to be retrieved (zero indexed)

Returns: the value at the indexed element

getRotationScale

public final void getRotationScale(Matrix3f m1)
Gets the upper 3x3 values of this matrix and places them into the matrix m1.

Parameters: m1 The matrix that will hold the values

getRow

public final void getRow(int row, Vector4f v)
Copies the matrix values in the specified row into the vector parameter.

Parameters: row the matrix row v The vector into which the matrix row values will be copied

getRow

public final void getRow(int row, float[] v)
Copies the matrix values in the specified row into the array parameter.

Parameters: row the matrix row v The array into which the matrix row values will be copied

getScale

public final float getScale()
Performs an SVD normalization of this matrix to calculate and return the uniform scale factor. This matrix is not modified.

Returns: the scale factor of this matrix

hashCode

public int hashCode()
Returns a hash number based on the data values in this object. Two different Matrix4f objects with identical data values (ie, returns true for equals(Matrix4f) ) will return the same hash number. Two objects with different data members may return the same hash value, although this is not likely.

Returns: the integer hash value

invert

public final void invert(Matrix4f m1)
Sets the value of this matrix to the matrix inverse of the passed matrix m1.

Parameters: m1 the matrix to be inverted

invert

public final void invert()
Sets the value of this matrix to its inverse.

mul

public final void mul(float scalar)
Multiplies each element of this matrix by a scalar.

Parameters: scalar The scalar multiplier.

mul

public final void mul(float scalar, Matrix4f m1)
Multiplies each element of matrix m1 by a scalar and places the result into this. Matrix m1 is not modified.

Parameters: scalar The scalar multiplier. m1 The original matrix.

mul

public final void mul(Matrix4f m1)
Sets the value of this matrix to the result of multiplying itself with matrix m1.

Parameters: m1 the other matrix

mul

public final void mul(Matrix4f m1, Matrix4f m2)
Sets the value of this matrix to the result of multiplying the two argument matrices together.

Parameters: m1 the first matrix m2 the second matrix

mulTransposeBoth

public final void mulTransposeBoth(Matrix4f m1, Matrix4f m2)
Multiplies the transpose of matrix m1 times the transpose of matrix m2, and places the result into this.

Parameters: m1 The matrix on the left hand side of the multiplication m2 The matrix on the right hand side of the multiplication

mulTransposeLeft

public final void mulTransposeLeft(Matrix4f m1, Matrix4f m2)
Multiplies the transpose of matrix m1 times matrix m2, and places the result into this.

Parameters: m1 The matrix on the left hand side of the multiplication m2 The matrix on the right hand side of the multiplication

mulTransposeRight

public final void mulTransposeRight(Matrix4f m1, Matrix4f m2)
Multiplies matrix m1 times the transpose of matrix m2, and places the result into this.

Parameters: m1 The matrix on the left hand side of the multiplication m2 The matrix on the right hand side of the multiplication

negate

public final void negate()
Negates the value of this matrix: this = -this.

negate

public final void negate(Matrix4f m1)
Sets the value of this matrix equal to the negation of of the Matrix4f parameter.

Parameters: m1 The source matrix

rotX

public final void rotX(float angle)
Sets the value of this matrix to a rotation matrix about the x axis by the passed angle.

Parameters: angle the angle to rotate about the X axis in radians

rotY

public final void rotY(float angle)
Sets the value of this matrix to a rotation matrix about the y axis by the passed angle.

Parameters: angle the angle to rotate about the Y axis in radians

rotZ

public final void rotZ(float angle)
Sets the value of this matrix to a rotation matrix about the z axis by the passed angle.

Parameters: angle the angle to rotate about the Z axis in radians

set

public final void set(Quat4f q1)
Sets the value of this matrix to the matrix conversion of the single precision quaternion argument.

Parameters: q1 the quaternion to be converted

set

public final void set(AxisAngle4f a1)
Sets the value of this matrix to the matrix conversion of the single precision axis and angle argument.

Parameters: a1 the axis and angle to be converted

set

public final void set(Quat4d q1)
Sets the value of this matrix to the matrix conversion of the (double precision) quaternion argument.

Parameters: q1 the quaternion to be converted

set

public final void set(AxisAngle4d a1)
Sets the value of this matrix to the matrix conversion of the single precision axis and angle argument.

Parameters: a1 the axis and angle to be converted

set

public final void set(Quat4d q1, Vector3d t1, double s)
Sets the value of this matrix from the rotation expressed by the quaternion q1, the translation t1, and the scale s.

Parameters: q1 the rotation expressed as a quaternion t1 the translation s the scale value

set

public final void set(Quat4f q1, Vector3f t1, float s)
Sets the value of this matrix from the rotation expressed by the quaternion q1, the translation t1, and the scale s.

Parameters: q1 the rotation expressed as a quaternion t1 the translation s the scale value

set

public final void set(Matrix4d m1)
Sets the value of this matrix to a copy of the passed matrix m1.

Parameters: m1 the matrix to be copied

set

public final void set(Matrix4f m1)
Sets the value of this matrix to a copy of the passed matrix m1.

Parameters: m1 the matrix to be copied

set

public final void set(Matrix3f m1)
Sets the rotational component (upper 3x3) of this matrix to the matrix values in the single precision Matrix3f argument; the other elements of this matrix are initialized as if this were an identity matrix (ie, affine matrix with no translational component).

Parameters: m1 the 3x3 matrix

set

public final void set(Matrix3d m1)
Sets the rotational component (upper 3x3) of this matrix to the matrix values in the double precision Matrix3d argument; the other elements of this matrix are initialized as if this were an identity matrix (ie, affine matrix with no translational component).

Parameters: m1 the 3x3 matrix

set

public final void set(float scale)
Sets the value of this matrix to a scale matrix with the passed scale amount.

Parameters: scale the scale factor for the matrix

set

public final void set(float[] m)
Sets the values in this Matrix4f equal to the row-major array parameter (ie, the first four elements of the array will be copied into the first row of this matrix, etc.).

set

public final void set(Vector3f v1)
Sets the value of this matrix to a translate matrix by the passed translation value.

Parameters: v1 the translation amount

set

public final void set(float scale, Vector3f v1)
Sets the value of this matrix to a scale and translation matrix; scale is not applied to the translation and all of the matrix values are modified.

Parameters: scale the scale factor for the matrix v1 the translation amount

set

public final void set(Vector3f v1, float scale)
Sets the value of this matrix to a scale and translation matrix; the translation is scaled by the scale factor and all of the matrix values are modified.

Parameters: v1 the translation amount scale the scale factor for the matrix

set

public final void set(Matrix3f m1, Vector3f t1, float scale)
Sets the value of this matrix from the rotation expressed by the rotation matrix m1, the translation t1, and the scale s. The translation is not modified by the scale.

Parameters: m1 The rotation component t1 The translation component scale The scale component

set

public final void set(Matrix3d m1, Vector3d t1, double scale)
Sets the value of this matrix from the rotation expressed by the rotation matrix m1, the translation t1, and the scale s. The translation is not modified by the scale.

Parameters: m1 The rotation component t1 The translation component scale The scale component

setColumn

public final void setColumn(int column, float x, float y, float z, float w)
Sets the specified column of this matrix4f to the four values provided.

Parameters: column the column number to be modified (zero indexed) x the first row element y the second row element z the third row element w the fourth row element

setColumn

public final void setColumn(int column, Vector4f v)
Sets the specified column of this matrix4f to the vector provided.

Parameters: column the column number to be modified (zero indexed) v the replacement column

setColumn

public final void setColumn(int column, float[] v)
Sets the specified column of this matrix4f to the four values provided.

Parameters: column the column number to be modified (zero indexed) v the replacement column

setElement

public final void setElement(int row, int column, float value)
Sets the specified element of this matrix4f to the value provided.

Parameters: row the row number to be modified (zero indexed) column the column number to be modified (zero indexed) value the new value

setIdentity

public final void setIdentity()
Sets this Matrix4f to identity.

setRotation

public final void setRotation(Matrix3d m1)
Sets the rotational component (upper 3x3) of this matrix to the matrix values in the single precision Matrix3f argument; the other elements of this matrix are unchanged; a singular value decomposition is performed on this object's upper 3x3 matrix to factor out the scale, then this object's upper 3x3 matrix components are replaced by the passed rotation components, and then the scale is reapplied to the rotational components.

Parameters: m1 single precision 3x3 matrix

setRotation

public final void setRotation(Matrix3f m1)
Sets the rotational component (upper 3x3) of this matrix to the matrix values in the single precision Matrix3f argument; the other elements of this matrix are unchanged; a singular value decomposition is performed on this object's upper 3x3 matrix to factor out the scale, then this object's upper 3x3 matrix components are replaced by the passed rotation components, and then the scale is reapplied to the rotational components.

Parameters: m1 single precision 3x3 matrix

setRotation

public final void setRotation(Quat4f q1)
Sets the rotational component (upper 3x3) of this matrix to the matrix equivalent values of the quaternion argument; the other elements of this matrix are unchanged; a singular value decomposition is performed on this object's upper 3x3 matrix to factor out the scale, then this object's upper 3x3 matrix components are replaced by the matrix equivalent of the quaternion, and then the scale is reapplied to the rotational components.

Parameters: q1 the quaternion that specifies the rotation

setRotation

public final void setRotation(Quat4d q1)
Sets the rotational component (upper 3x3) of this matrix to the matrix equivalent values of the quaternion argument; the other elements of this matrix are unchanged; a singular value decomposition is performed on this object's upper 3x3 matrix to factor out the scale, then this object's upper 3x3 matrix components are replaced by the matrix equivalent of the quaternion, and then the scale is reapplied to the rotational components.

Parameters: q1 the quaternion that specifies the rotation

setRotation

public final void setRotation(AxisAngle4f a1)
Sets the rotational component (upper 3x3) of this matrix to the matrix equivalent values of the axis-angle argument; the other elements of this matrix are unchanged; a singular value decomposition is performed on this object's upper 3x3 matrix to factor out the scale, then this object's upper 3x3 matrix components are replaced by the matrix equivalent of the axis-angle, and then the scale is reapplied to the rotational components.

Parameters: a1 the axis-angle to be converted (x, y, z, angle)

setRotationScale

public final void setRotationScale(Matrix3f m1)
Replaces the upper 3x3 matrix values of this matrix with the values in the matrix m1.

Parameters: m1 The matrix that will be the new upper 3x3

setRow

public final void setRow(int row, float x, float y, float z, float w)
Sets the specified row of this matrix4f to the four values provided.

Parameters: row the row number to be modified (zero indexed) x the first column element y the second column element z the third column element w the fourth column element

setRow

public final void setRow(int row, Vector4f v)
Sets the specified row of this matrix4f to the Vector provided.

Parameters: row the row number to be modified (zero indexed) v the replacement row

setRow

public final void setRow(int row, float[] v)
Sets the specified row of this matrix4f to the four values provided.

Parameters: row the row number to be modified (zero indexed) v the replacement row

setScale

public final void setScale(float scale)
Sets the scale component of the current matrix by factoring out the current scale (by doing an SVD) from the rotational component and multiplying by the new scale.

Parameters: scale the new scale amount

setTranslation

public void setTranslation(Vector3f trans)
Modifies the translational components of this matrix to the values of the Vector3f argument; the other values of this matrix are not modified.

Parameters: trans the translational component

setZero

public final void setZero()
Sets this matrix to all zeros.

sub

public final void sub(Matrix4f m1, Matrix4f m2)
Sets the value of this matrix to the matrix difference of matrices m1 and m2.

Parameters: m1 the first matrix m2 the second matrix

sub

public final void sub(Matrix4f m1)
Sets the value of this matrix to the matrix difference of itself and matrix m1 (this = this - m1).

Parameters: m1 the other matrix

toString

public String toString()
Returns a string that contains the values of this Matrix4f.

Returns: the String representation

transform

public final void transform(Tuple4f vec, Tuple4f vecOut)
Transform the vector vec using this Matrix4f and place the result into vecOut.

Parameters: vec the single precision vector to be transformed vecOut the vector into which the transformed values are placed

transform

public final void transform(Tuple4f vec)
Transform the vector vec using this Matrix4f and place the result back into vec.

Parameters: vec the single precision vector to be transformed

transform

public final void transform(Point3f point, Point3f pointOut)
Transforms the point parameter with this Matrix4f and places the result into pointOut. The fourth element of the point input paramter is assumed to be one.

Parameters: point the input point to be transformed. pointOut the transformed point

transform

public final void transform(Point3f point)
Transforms the point parameter with this Matrix4f and places the result back into point. The fourth element of the point input paramter is assumed to be one.

Parameters: point the input point to be transformed.

transform

public final void transform(Vector3f normal, Vector3f normalOut)
Transforms the normal parameter by this Matrix4f and places the value into normalOut. The fourth element of the normal is assumed to be zero.

Parameters: normal the input normal to be transformed. normalOut the transformed normal

transform

public final void transform(Vector3f normal)
Transforms the normal parameter by this transform and places the value back into normal. The fourth element of the normal is assumed to be zero.

Parameters: normal the input normal to be transformed.

transpose

public final void transpose()
Sets the value of this matrix to its transpose.

transpose

public final void transpose(Matrix4f m1)
Sets the value of this matrix to the transpose of the argument matrix

Parameters: m1 the matrix to be transposed