Non-Conforming Inheritance: the SmartEiffel Experiment
of a High-Level Mechanism

Frederic Merizen
frederic.merizen@Ioria.fr

Dominique Colnet
dominique.colnet@loria.fr

LORIA
Campus Scientifique
BP 239
54506 Vandoeuvre-lés-Nancy Cedex

Philippe Ribet
philippe.ribet@Ioria.fr

ABSTRACT

Non-conforming inheritance (NC-inheritance) is a mecha-
nism recently introduced in the new Eiffel definition. The
NC-inheritance mechanism is similar to traditional inher-
itance but it disallows polymorphism. This simple mech-
anism appears to be useful in many situations because it
allows the designer to capture more design decisions in the
source code itself. Furthermore this mechanism helps com-
pilers to statically remove more dynamic dispatch code. NC-
inheritance incurs no type-system soundness problems even
when arguments are redefined covariantly or when the ex-
portation is restricted in the subclass. Out of the Eiffel
world, the NC-inheritance mechanism can be useful to add
a no-penalty and no-risk multiple-inheritance-like facility.
For instance the Java language, initially designed for simple-
inheritance, could be a possible candidate for an NC-inherit-
ance extension.

Categories and Subject Descriptors

D.2.3 [Software Engineering]: Coding Tools and Tech-
niques— Object-oriented programming; D.3.3 [Programming
Languages]: Language Constructs and Features— Classes
and objects, Inheritance, Polymorphism

General Terms

Design, Languages

Keywords

Non-conforming inheritance

1. INTRODUCTION

As members of the ECMA Eiffel normalization group [1] we
have implemented and experimented non-conforming inher-

Cyril Adrian
cyril.adrian@laposte.net

itance (NC-inheritance) into our SmartEiffel compiler. Sur-
prisingly, this simple mechanism had a substantial impact on
our programming practice. NC-inheritance offers useful de-
sign options at no run-time cost, without requiring a whole-
system analysis and is not inherently Eiffel-specific. This
paper is not meant as reference material for NC-inheritance
in Eiffel, and we will not go into Eiffel-specific peculiarities
of syntax or semantics. Instead, this paper is our attempt
to document the NC-inheritance mechanism in a mostly
language-neutral way, in the hope that our experiment will
be useful for other language designers.

The idea behind NC-inheritance is simple: complement the
traditional inheritance mechanism with a new one, which
keeps the code reuse aspects but discards the subtyping rel-
tionship. As a matter of fact, the traditional inheritance
mechanism of object-oriented languages is perfectly suitable
to represent the “isa” relationship between two types. For
example, when the class APPLE inherits from the class FRUIT,
the traditional inheritance mechanism is perfect just because
an APPLE isa kind of FRUIT. When the “isa” relationship
does exist between two types, all methods and all attributes
can be inherited without any major problems. Furthermore,
in such a situation, polymorphism can be used safely because
the subclass is a more specific version of its superclass. All
methods which are exported by the ancestor are likely to be
exported by the descendant because of the very nature of
the “isa” relationship.

Still, in some situations, a class has some methods and/or
attributes in common with another class although they are
not related by the “isa” relationship in the sense of the
Liskov [11] substitution principle. Having one class plainly
inherit from the other is not a good idea: in addition to the
implementation, the child gets conformance and thus (un-
wanted) polymorphism. The developer then often has to
choose between duplicating code or using awkward compo-
sition relationships. This is where NC-inheritance can help.

Section 2 presents a typical example where the NC-inherit-
ance mechanism is really better than traditional inheritance.
Section 3 describes the NC-inheritance mechanism and its
interaction with other langugage mechanisms. Section 4

shows some common uses of the NC-inheritance mechanism
in the SmartEiffel libraries. Section 5 explains the impact
of NC-inheritance for design pattern translation. Section 6
presents the related work and section 7 concludes.

2. AMOTIVATING EXAMPLE

As a first motivating example of the NC-inheritance mech-
anism, let us take again the traditional stack class example.
The implementation of the Java class Stack relies on tra-
ditional inheritance: the class java.util.Stack simply ex-
tends the class java.util.Vector, where the class Vector
is a resizable ordered collection of elements. Obviously, this
made Stack very simple to implement. One may argue that
a Stack is not really akind of Vector, but the purpose of
this article is not to to discuss this. Still, it is a matter of
fact that the implementation decision made here allows us
to use all methods of the class Vector on Stack objects as
well. The less we can say is that a Stack obtained by simply
inherit Vector is not a pure Stack because one can directly
peek or put elements whatever their position in the Stack.

The traditional Eiffel language allows the class Stack to hide
methods and attributes inherited from the class Vector, but
this protection is quite weak with traditional inheritance. It
can be bypassed using polymorphic assignments of Stack
objects to Vector variables: first assign your Stack object
into a local Vector variable and then just apply any method
of Vector you want on your Stack object. If Stack inherits
from Vector with the traditional inheritance mechanism,
such polymorphic assignments are allowed. Thus, changing
the exportation status of some operations from Vector into
Stack does not really prevent the usage of those operations.

Thanks to NC-inheritance, this is no longer possible because
it is exactly the purpose of this new mechanism: the NC-
inheritance mechanism is similar to traditional inheritance
but it disallows polymorphism. In the Eiffel language, this
new mechanism allows the designer of the class Stack to in-
herit the class Vector in a non-conforming way. Once this
decision is made, it is no longer possible to assign an ex-
pression of type Stack into a Vector variable. Actually, if
Stack does not explicitly inherit from at least one class in a
conforming way, then Stack is at the top of a local subgraph
of the conformance graph. If the Stack is actually such a lo-
cal top, then Stacks cannot be assigned into variables of any
other type, not even into variables of the universal type ANY
(equivalent to Java’s Object). The compile-time protection
cannot be bypassed simply because all assignments and all
argument passing sites are statically checked. Because the
exportation status of inherited methods and attributes can
be altered in the subclass, the list of available methods can
be actually limited to the pure point of view one can have
on a Stack.

Since we have implemented the NC-inheritance mechanism
in our SmartEiffel compiler we have added such a class,
named STACK, with a limited set of available methods [6].
We also used the very same NC-inheritance to implement the
class QUEUE, which NC-inherits from our class RING_ARRAY.

3. THE NC-INHERITANCE MECHANISM

3.1 Design goals and graphical convention
Originally, we introduced NC-inheritance in the Eiffel lan-
guage to allow for implementation inheritance that does not
incur the possibility of unwanted polymorphic calls. We
reach the goal of implementation inheritance without poly-
morphic calls by forbidding polymorphic assignments. If an
object can never be polymorphically assigned to a variable of
an ancestor type, then that ancestor will not get substituted
by the heir for any call. This is the behaviour appropriate
to implementation purpose.

Of course, as a useful mechanism to represent the isa rela-
tionship,traditional inheritance is still part of the program-
ming tools we need. With NC-inheritance to contrast, we
now identify traditional inheritance as Conforming inherit-
ance. The vocabulary may be new, but the mechanism is
kept unchanged. As a consequence, we now have two kinds
of inheritance, C-inheritance and NC-inheritance. Figure 1
shows a graphical representation for the C-inheritance and
the NC-inheritance relationships.

|ARRAYED_CO_LECTI N | Legend

Conf or mi ng
I nheritance |ink
|ARRAY | |RI NG _ARRAY |
,_‘_, ,_‘_, Non- Conf or mi ng

I nheritance |ink

STACK QUEUE

Figure 1: Two kinds of inheritance, traditional C-
inheritance or the new NC-inheritance mechanism.

3.2 Definitions and terminology

Once there are two inheritance mechanisms—C-inheritance
and NC-inheritance—in the same language, we have to be
careful when using notions such as parent or ancestor and
their opposites child and heir. Using the class hierarchy
represented in figure 2, let’s refine those words.

The parent relationship does not take the conforming or non-
conforming nature of inheritance into account. For instance,
the classes B and C both inherit A, and A is the parent of
both. The ancestor relationship is the reflexive transitive
closure of the parent relationship as usual [13], and it does
not take conformance into account. As an example, still on
figure 2, A is an ancestor of D.

The conforming parent relationship is the parent relation-
ship restricted to conforming inheritance. The class B has a
conforming inheritance link to A, so A is a conforming parent
of B. The conforming ancestor relationship is the reflexive
transitive closure of the conforming parent relationship. For
instance, A is a conforming ancestor of both ¢ and B. While
the NC-inheritance link from ¢ to A does not provide con-
formance to A, the path through B does; NC-inheritance
does not disallow C-inheritance or prevent it from providing
conformance to any class.

We say that a class is a non-conforming ancestor if it is an

ancestor but not a conforming ancestor. In figure 2, the
class D has two non-conforming ancestors, A and B, and it
is the only class that has non-conforming ancestors. Fi-
nally, as it is sometimes more convenient to use verbs than
nouns, we say that a class inherits from its ancestors, that
it NC-inherits from its non-conforming ancestors, and that
it conforms to its conforming ancestors.

Legend
Conf or mi ng
I nheritance |ink

Non- Conf or mi ng
I nheritance |ink

Figure 2: The class A is a conforming ancestor of B
and c. The class A is a non-conforming ancestor of
D.

The syntax of the NC-inheritance mechanism is not the
most important point to be discussed here; the normaliza-
tion work [1] is not completed and the point is still dis-
cussed. In traditional Eiffel, the list of parents is arranged
in an inherit clause introduced by the inherit keyword.
At time being, the SmartEiffel implementation keeps this
clause for traditional (conforming) inheritance and adds a
new clause, named insert clause listing the non-conforming
parents. Syntactically, an insert clause only differs from an
inherit clause by the fact that it is introduced by the new
insert keyword.

3.3 Semantics of NC-inheritance

As said previously, the only distinctive feature of NC-in-
heritance is to allow a class to inherit from another class
without conforming to it. In other words, NC-inheritance
does not give you the permission to make polymorphic as-
signments.

The NC-inheritance mechanism is relevant only for stati-
cally checked object-oriented languages. Indeed, in a stati-
cally typed language, an assignment from a source expres-
sion of type S to a destination variable of type D is valid
if and only if S conforms to D. Obviously, the same re-
striction that applies to assignments also applies to method
parameter passing: an actual argument of type S matches
a formal argument of type D if and only if S conforms to
D. As we already know, methods and attributes are inher-
ited in the same way through NC-inheritance as through
C-inheritance. Multiple inheritance is equally possible for
conforming parents or for non-conforming parents. Also,
regardless of conformance, a class can rename or redefine
methods and attributes it has inherited, and it can change
their exportation status. Again, the only difference is that
the child does not gain conformance to its parent through
an NC-inheritance link. The semantics of NC-inheritance
are thus very simple.

The small class hierarchy portrayed on figure 1 features both
conforming and non-conforming inheritance relationships.

While ARRAYs and RING_ARRAYS can be assigned to AR-
RAYED_COLLECTIONS, STACKS cannot be assigned to ARRAYS
nor to ARRAYED_COLLECTIONs. Polymorphic assignments
are not possible for QUEUEs either. Of course, one can still
write a class and make it conform to STACK. Let’s assume
that we write the class STACK_WITH_BELLS_AND_WHISTLES
and that it has a conforming inheritance link to STACK,
but no conforming inheritance link to a class that conforms
to ARRAY. Then objects of type STACK_WITH_BELLS_AND _-
WHISTLES can be polymorphically assigned to STACKs, but
not to ARRAYS.

3.4 Impact on static checks

Let’s now see how NC-inheritance interacts with the rest of
the language. The bad news is that all the NC-inherited
code must be checked in the subclass even if it was correct
in the ancestor. Actually, this is due to the static type of the
this expression, the receiver, also called Current in Eiffel
or self in some other object-oriented languages.

As a typical example, let’s have a look at a simple piece of
code that is perfectly valid in its original class. In the class
A, assuming that the variable my_a is of type A, the following
code is obviously correct:

my_a = this;

This performs polymorphic assignments of the this object
to a variable of an ancestor type—in this case, the ancestor
happens to be the class A itself. This code becomes invalid
when NC-inherited by a class B since this, whose type is
B, does not conform to A and cannot be assigned to my_a.
We could have solved this problem by allowing NC-heirs to
perform polymorphic assignments of themselves to variables
or method parameters of an NC-ancestor type like C++ does,
but in doing this we would have allowed polymorphic calls
to escape (see 6.2).

We only know a few other situations than NC-inheritance
where code can become invalid through inheritance. This
phenomenon forces the compiler not only to check the va-
lidity of the code in the parent class, but also to check it
again, as NC-inherited code, in the child class. While a
whole-system analysis is not needed, this does require access
to the NC-ancestors’ source code. We suspect that sufficient
information could be gathered from JVM or CLI bytecode
but have not investigated the issue in full depth. We can
think of no practical way to implement NC-inheritance if
the body of an ancestor’s method is only available in a pure
binary object-code form.

3.5 Type system soundness

Eiffel has had covariance and export restrictions from the be-
ginning. We find these two features useful design tools, but
they are also well-known for making a type system unsound
[4, 3, 5]. But NC-inheritance does not create a subtyping
relationship and it is not possible to polymorphically assign
an object to a variable of an NC-ancestor type or to pass it
as an argument to a function that expects an NC-ancestor.

'n Eiffel, we would write my_a := Current.

Widening the availability of an inherited method or attribute
in a child is harmless for the subtyping relationship: to the
outside world, the child simply can do more than the parent
could. Conversely, restricting the availability of a feature
in a child breaks the isa relationship. The Stack from sec-
tion 2 is not really a Vector, because a Stack does not have
the random access facilities a Vector has. As we have seen,
when an export restriction is applied in a C-inheritance link,
it can be bypassed. Just assign the child with restrictive ex-
portation to a variable of a less restrictive parent type, and
access the method or attribute through that variable. This
trick is the only way to break exportation restrictions, and
a number of solutions have been proposed to address this
issue, some of them involing a whole-system anlysis. If the
exportation restriction is applied in an NC-inheritance link
instead of a C-inheritance link, the trick does not work since
assignments to NC-ancestors are not allowed. Exportation
restrictions are safe if performed through NC-inheritance.

Similarly, calls to methods with a covariant redefinition only
become unsafe when polymorphism enters the picture [12].
Covariantly redefining a method’s argument restricts the set
of correct types for this argument.

This restriction can be circumvented with exactly the same
trick used for exportation restrictions: assign the child to a
less restrictive parent variable. Through this variable, you
can now call methods with arguments that are invalid in the
covariant redefinition, but valid in the ancestor. But, as we
already know, the polymorphic assignment that is central
to this trick is not possible if the covariant redefinition was
made in a NC-child. We conclude that covariant redefini-
tions are safe if performed through NC-inheritance.

3.6 The universal ancestor

Before the introduction of the NC-inheritance mechanism in
Eiffel, a class with no explicit parent was, by default, a de-
scendant of the universal class ANY, which is the equivalent
of the Java class Object. An isa relationship between two
classes is a strong design element that should result from a
conscious design decision. For this reason, isa relationships
should be explicitly stated in the source code an never re-
sult from a default value in the langugage. For that reason,
classes that have no explicit parent are now given ANY as
a default non-conforming parent by the SmartEiffel com-
piler. Of course, this default parent can be overriden by the
developer. Listing ANY as an explicit conforming parent is
all they have to do to get the equivalent of the old default
behaviour. The new default is consistent with normal pro-
gramming practice, where ANY is mainly used as a pool of
utility methods. There are hardly any variables of such a
general type as ANY: such variables are bound to be down-
cast sometime later. One could argue that programs that
have a lot of ANY variables should be written in a dynami-
cally typed language rather than a statically typed one.

To sum it up, NC-inheritance gives developers all features of
C-inheritance, plus it allows them to get (unwanted) poly-
morphic assignments rejected. That way, our goal of pre-
venting polymorphic calls is clearly attained.

3.7 NC-inheritance and encapsulation

The Eiffel exportation mechanism allows the developer to
be quite selective about which classes are granted access to
a given method or attribute. A method or attribute can
be equipped with a possibly empty list of classes that are
allowed to access them as clients. This mechanism works
in conjunction with the inheritance mechanism: if a class is
listed as a valid client for a given method or variable, then
all its heirs are also valid clients.

One gets the Eiffel equivalent of Java’s public exportation
level by granting access to the universal class ANY. This way,
because ANY is the ancestor of all classes, the permission is
passed down from parent to child, making the method or
the attribute available everywhere. Conversely, a method or
variable with an empty list of valid clients can never be used
in qualified calls. It is only available to the class defining it
and its heirs using unqualified calls. This is equivalent to
the protected level of C++. In the Eiffel langugage, this is
the most restrictive encapsulation level available. There is
no equivalent to the private level of C++.

The exportation mechanism of Eiffel we just recalled here
is not new and has not changed since a long time. The
introduction of NC-inheritance has not changed the expor-
tation rules. The permissions are passed down from parent
to child through conforming and non-conforming inheritance
links alike. We initially envisionned a more restrictive rule:
permissions would only by passed down through conforming
inheritance links. This rule actually proved very impracti-
cal. The classes in figure 3 illustrate the problem. The class

Legend
Conf or mi ng
I nheritance |ink

Non- Conf or mi ng
I nheritance |ink

Client-supplier
rel ationship

Figure 3: The method f of the class A uses the
method g of the class c. When f is NC-inherited
by B, it should still be allowed to use g.

B NC-inherits from the class A, and the method f of A uses
the method g of C. Suppose we use the restrictive rule.
To keep the code of £ valid in the context of B, you would
have to add B to the export-list of g in C. In other words,
we would enforce a strong coupling between a class and the
suppliers of its NC-parents. That’s hardly a way to favor
code reuse, and not even feasible if C is a third-party class
that cannot be modified.

3.8 NC-inheritance for Java?

The Java language [2] has interface inheritance and class
inheritance. Interface inheritance is about conformance but
not about code reuse, while class inheritance is about both
conformance and code reuse. While we understand that
the term implementation inheritance is used to emphasize
the difference between the two kinds of inheritance, we also
feel it is a bit of a misnomer since class inheritance is not

only about implementation. Actually, misusing the class
inheritance mechanism for mere code reuse purposes leads
to the “a Stack is (not quite) a Vector” issues depicted in
section 2. Holub goes as far as considering the use of class
inheritance as a strong indication of bad design [9].

We claim that NC-inheritance would bring type-safe reuse
inheritance, and even multiple reuse inheritance to the Java
language. No run-time penalty is incurred, and no change
to the virtual machine is required. As we have seen, NC-
inheritance allows code reuse without the cost of spurious
conformance. Of course, disallowing the use of NC-heirs
where NC-ancestors are expected makes for cleaner and more
precise design, but it also helps performance. Since NC-
inheritance does not create any conformance link, methods
or attributes that are acquired through an NC-inheritance
link can be treated by the compiler just as if they were
plainly written in the child. Most importantly, this means
that no special treatment is required to handle the virtual
function table, even in the case of multiple NC-inheritance.
Actually, a great part of the power of NC-inheritance lies in
the possibility to mix and match implementations. Just as
interface inheritance, NC-inheritance needs multiple inheri-
tance to reach its full potential.

4. NC-INHERITANCE AT WORK
4.1 Sharing constants with NC-inheritance

The first usage we made of NC-inheritance was probably
to share constants amongst various classes. Indeed, it is
straightforward to group a topic-related bunch of constants
definitions in a dedicated class. Other classes that have to
access those constants just need to NC-inherit the dedicated
class. All constant names are thus directly part of the new
class definition exactly as other local definitions are. A typ-
ical example is the class COLOR_LIST in our Vision graphical
library. As one may guess, this class is a list of color defini-
tions. When a class needs to use this bunch of color names,
this class just has to NC-inherit from the class COLOR_LIST.
In such a situation, it is better to use NC-inheritance to
emphasize the fact that we just want to insert the list of
definitions and there is no “isa” relationship between this
class and COLOR_LIST.

In Java, there seems to be a common idiom of sharing con-
stant definitions by using static member definitions. This
new possibility offered by NC-inheritance avoids the need to
prefix each constant usage with the name of the class where
the static definition is located. As an example, a class that
needs to manipulate ASCII constants a lot, just has to NC-
inherit the ASCII_.CONSTANT class to make all ascii constant
names part of the new class.

Actually, Eiffel does not offer the possibility to define static
attributes or functions. To implement a Java-like solution in
Eiffel, one would actually need to create an instance of the
class that holds the constant definitions just to access these
constants. The NC-inheritance solution does not require
the creation of an extra object and is quite attractive in
Eiffel. This way, it is also possible to share the access not
only for simple constants, but also for singleton objects to
be shared. Shared singleton access is achieved in Eiffel by
using functions which are executed only once, hence the next
section which is about code sharing via NC-inheritance.

| CREATE_SUPPORT |
| L: I_‘_l

|I NSTRUCTI ON EXPRESSI ON
| I

| CREATE_| NSTRUCTI ON | | CREATE_EXPRESS| ON |

Conf or m ng

L d Non- Conf or mi ng
egen I nheritance |ink

I nheritance |ink

Figure 4: A routine storage example.

4.2 Sharing methods and attributes with NC-

inheritance

Also very natural is the need to share some code between
classes which are not related by a common conforming ances-
tor. As an example, in our SmartEiffel compiler, as shown
on figure 4, the class CREATE_EXPRESSION is a specialization
of the abstract class EXPRESSION (a CREATE_EXPRESSION s a
EXPRESSION). Similarly, the class CREATE_INSTRUCTION is a
specialization of the abstract class INSTRUCTION (similarly a
CREATE_INSTRUCTION is @ INSTRUCTION). Because the im-
plementation of the class CREATE_EXPRESSION is similar to
the implementation of the class CREATE_INSTRUCTION, com-
mon instance variables as well as many common methods
are defined once in CREATE_SUPPORT. The usage of NC-
inheritance (figure 4) emphasizes the fact that CREATE_SUP-
PORT is just a useful place to share common code which
is necessary to implements both CREATE_EXPRESSION and
CREATE_INSTRUCTION and that there is no possible substitu-
tion of CREATE_EXPRESSION with CREATE_INSTRUCTION (or
conversely).

Actually, the classes EXPRESSION and INSTRUCTION already
have a common ancestor named CODE. Thus, one may
argue that there is no need for a CREATE_SUPPORT class
since common code of the CREATE_EXPRESSION and CRE-
ATE_INSTRUCTION classes could be stored into the CODE class
itself. This is not possible because EXPRESSION and IN-
STRUCTION have a lot of heirs that don’t use the imple-
mentation of CREATE_SUPPORT. If the contents of CRE-
ATE_SUPPORT were fused into the class CODE, its methods
would pollute the name space of other classes that don’t
need them. Even worse, its attributes would needlessly bloat
the representation of all those classes.

Still for the example of figure 4, it is interesting to notice
that methods which are defined in CREATE_SUPPORT and
that are inherited using an NC-inheritance link can be trig-
gered due to dynamic dispatch. Indeed a shared method of
CREATE_SUPPORT can be for example the implementation of
an abstract method of the class CREATE_EXPRESSION. The
class EXPRESSION has a lot of heirs and dynamic dispatch
does work as expected. The fact that some method is inher-
ited via some NC-inheritance link does not prevent to use
dispatch on this method.

4.3 Hiding some universal properties

As we have seen previously for the STACK example of figure 1,
it is sometimes better to hide some inherited operations.
By using NC-inheritance, we can safely hide operations or
attributes that were visible in the non-conforming parent
class.

This remark even applies to the universal class ANY. Among

other operations, ANY contains a comparison method is_equal,

the equivalent of the Java equals method and the tradi-
tional clone operation to duplicate objects. Generally a
class is supposed to provide those methods, but there are
some situations in which a class wants to hide those univer-
sal properties.

As an example, when one wants to promote as much as
possible aliasing [15], one may decide not to export the pos-
sibly slow equals comparison method. As stated in section
3.6 a class can now have ANY as an NC-ancestor and thus
safely hide the inherited equals method. By doing so it is no
longer possible to call the possibly slow equals method from
its clients. This is a way to promote the usage of the basic
fast comparison operator (the built-in == in Java). Similarly,
the universal clone inherited method can be hidden in some
situations in order to localize or to forbid object duplication
(see section 5.1 about the Singleton design pattern).

4.4 Qualifying exportation

As seen in section 3.7, when a class has an NC-ancestor,
then it is allowed to access all methods and attributes the
NC-ancestor is allowed to access. We will now present an
exportation issue that arises in the class STRING. The prob-
lem we present is typical of problems that can arise in many
other classes. The well known Eiffel class STRING describes
resizable strings. As one may guess, the class STRING is
performance-critical, and need to hold a subtle balance be-
tween safety and performance. Indeed, STRING objects are
used in many classes not to say in most classes. Most clients
of the class STRING are satisfied with its ordinary and safe
set of methods. Some other clients need to have some ex-
tra privileges in order to reach the desired efficiency. As an
example, input- and output-related classes (for example the
class TEXT_FILE_READ) do need to have a direct access to
the internal storage area of the STRING which is used as a
memory cache buffer.

Because the direct access to the storage area of STRINGS
must not be the default, the storage instance variable must
not be exported to all classes. Because we cannot predict
in advance all the names of the classes which may, one day,
need the privilege of direct storage access, it is not possible
to enumerate the list of allowed classes. In order to achieve
our goal the internal storage area of the class STRING is
only exported for the class STRING_HANDLER. The class
STRING_HANDLER which is also part of our standard library
is just an empty class (no method and no attribute). All the
classes that need to have access to the internal storage area
of STRING just need to NC-inherit from the class STRING_-
HANDLER. Again, the use of NC-inheritance makes things
clearer. The goal of the NC-inherited class STRING_HANDLER
is just to have access to the storage area of STRINGs and
not to define a STRING_HANDLER subtype or to use polymor-
phism.

4.5 Improved compiling efficiency

We have seen that NC-inheritance allows for various im-
provements in program design. But NC-inheritance can also
have a small positive impact on compile-time and run-time
performance. Since NC-inheritance does not entail a subtyp-
ing relationship as C-inheritance does, there are less edges in
the subtyping graph when NC-inheritance is used. Compil-
ers that do type prediction can predict smaller sets of pos-
sible dynamic subtypes for a given static type. Similarly, in
Java it would be possible to mark a method as final if it is
not redefined in conforming heirs, but non-conforming heirs
would not need to be taken into account. This increased
knowledge of static types can result in smaller dynamic dis-
patch functions or smaller virtual function tables.

5. NC-INHERITANCE AND DESIGN PAT-
TERNS

The NC-inheritance mechanism allows us to better tran-
scribe some design patterns [7] in Eiffel ([10] is the Eiffellish
version of the GoF book).

We have not yet explored exhaustively the whole design pat-
tern catalog, but the NC-inheritance mechanism impacts
at least the following patterns: Singleton, Flyweight, Class
Adapter and Template Method.

5.1 Singleton

The intent of the Singleton design pattern [7] is to ensure
that a class has only one instance, and to provide a global
access point to it. In Eiffel the universal class ANY contains
among others, a duplication method analogous to Java’s
clone. In order to avoid the duplication of the Singleton
object itself, the Singleton class has to hide the duplication
methods which are by default exported by the ancestor class
ANY. As stated in section 3 a class can now have ANY as an
NC-ancestor and thus safely hide the duplication methods
from its clients. Thus, it is better for the Singleton class to
use NC-inheritance than traditional conforming inheritance.

5.2 Flyweight

The intent of the Flyweight design pattern [7] is to use shar-
ing to support large numbers of fine-grained objects effi-
ciently. In such a situation a maximal aliasing is required
and the developer does not want duplication methods to be
called (except, maybe, for the Flyweight factory itself). As
for the Singleton design pattern, it is safer to limit the ex-
portation of the duplication methods inherited from the ANY
universal class. By using NC-inheritance for the Flyweight
class definition, it is safe to completely hide all duplication
methods or to limit the use of the duplication methods for
the Flyweight factory only.

5.3 Class Adapter

The Class Adapter design pattern [7], not to be confused
with the Object Adapter, converts the interface of a class
into another interface the clients expects.

Adapters let classes with otherwise incompatible interfaces
work together. As shown on figure 5, an ADAPTER has multi-
ple parents: typically, the class to be adapted, the ADAPTEE,
and the interface we want to implement, the TARGET. Still,
we don’t want the adapter to appear as having an “isa”

relationship with the adaptee—that’s why we are using the
Adapter pattern in the first place. The adapter naturally
NC-inherits the adaptee.

As a side note, the UML diagram of the Class Adapter de-
sign pattern in [10] is annotated with an implementation
tag for the inheritance link between the class ADAPTER and
the class ADAPTEE, precisely the link for which we are using
NC-inheritance.

5.4 Template Method

The Template Method pattern [7] defines the skeleton of
an algorithm in an operation, deferring some steps to sub-
classes. Template Method lets subclasses redefine some steps
of an algorithm without changing the algorithm structure.

Actually, when a common conforming ancestor for all con-
crete classes that need to define the Template Method ex-
ists, it is straightforward that the Template Method has to
be stored in this common conforming ancestor and that the
NC-inheritance mechanism is not useful. However, when we
are in a situation similar to the one of figure 4, that is to
say when the Template Method must be shared by classes
which are not related by a common conforming ancestor, the
NC-inheritance does help. Thus, the class CREATE_SUPPORT
can contain the Template Methods to be shared by CRE-
ATE_EXPRESSION and CREATE_INSTRUCTION. Again, the us-
age of NC-inheritance emphasizes the fact that the purpose
of CREATE_SUPPORT is to share code.

6. RELATED WORK

The nested inheritance mechanism introduced in [14] is de-
signed to fit in a single inheritance model. It does not try
to achieve the same issues as our NC-inheritance mecha-
nism. It is interesting to notice that, like NC-inheritance,
the nested inheritance mechanism does not introduce sound-
ness problems in the type system.

6.1 Sather’s INCLUDE mechanism

Sather has a mechanism for code reuse that is very simi-
lar to NC-inheritance [8]. We were not aware of the ex-
istence at the time of implementing NC-inheritance in the
SmartEiffel compiler and libraries and, to the best of our
knowledge, Sather did not influence the ECMA Eiffel nor-
malization group when designing NC-inheritance.

Actually, Sather has a class/interface dichotomy just like
Java. As their names suggest, classes can hold code while
interfaces cannnot. Just like Java interfaces, Sather inter-
faces can inherit other Sather interfaces, and Sather classes
can implement Sather interfaces. However, there is no such
thing as C-inheritance between classes in Sather. Instead,

TARGET | [moaPTEE | tevend
A Conf or ni ng
T I nheritance |ink
ADAPTER Non- Conf or mi ng

I nheritance |ink

Figure 5: The class Adapter design pattern.

a Sather class can include another class. Just like multi-
ple NC-inheritance, multiple inclusion is handled seamlessly
by Sather. Sather also allows the developper to restrict the
availability of included methods or attributes, just like the
mechanism discussed in section 3.7.

The main differrence between our mechanism and Sather’s
is the fact that that C-inheritance and NC-inheritance are
handled uniformly by our mechanism, while Sather relies on
a class/interface dichotomy. On another point, the design-
ers of Sather did not reap the byproduct of safe covariant
redefinitions through NC-inheritance. Actually, in Sather,
only contravariant redefinitions are allowed.

6.2 C++ private/protected inheritance

The C++ mechanisms known as private and protected in-
heritance bear a superficial resemblance with our NC-in-
heritance mechanism. However, they differ in one substan-
tial way: the C++ mechanisms do not really prevent poly-
morphism. When a class B privately inherits from a class
A, the class B is allowed to perform polymorphic assign-
ments of B objects to A variables (see C++ code of figure 6).
Other classes are not allowed to perform such polymorphic
assignments, but B can easily let pointers escape. Then,
polymorphic calls can still happen outside of B.

#include <iostream>

class A {
public:
Ax as_A(void) {
return this;
} private:
virtual void f(void) { virtual void f(void) {
std::cout << "Hello"; std::cout << " world!\n";

} }
}s s

int main(void) {
Bx b = new B;
Ax a = new A;

class B: private A {
public:
using A::as_A;

a—>f(); // Polymorphic call prints "Hello"
a = b->as_AQ); // Polymorphic assignment
a->f(); // Polymorphic call prints " world!\n"

Figure 6: The private inheritance mechanism of C++
does not prevent polymorphism.

As a corollary it is not possible to safely restrict the expor-
tation of methods even when they are inherited the private
way in C++. The example on figure 6 demonstrates that the
method £ can still be triggered on an object of type B.

As a side note, the C++ mechanism ties conformance issues
to the issues of method and attribute availability: all pub-
lic methods and attributes acquired through protected in-
heritance become protected, and all those acquired through
private inheritance become private. This is not really an
issue since using declarations can make hidden methods and
attributes visible again, but we would still rather handle the
separate concerns of inheritance and exportation with two
separate mechanisms.

7. CONCLUSION

During our work on the Eiffel language [6], we have ex-
perimented the NC-inheritance mechanism on a large scale
project and libraries. This simple mechanism appears to be
valuable to capture more design information in the source
code of applications. Some design patterns can be imple-
mented in a cleaner way with NC-inheritance. We can now
use this inheritance variation for implementation at no risk.
With NC-inheritance, covariant redefinition of arguments
is no longer dangerous and does not incur type soundness
problems. Exportation can also be tightened in subclasses
without any problems.

We demonstrated the mechanism in Eiffel, could be used as
well in other statically typed object-oriented language such
as Java.

8. ACKNOWLEDGMENTS
To all SmartEiffel users for their feedback and all their help-

ful comments during the experimentation of the NC-inheritance

mechanism, to Bertrand Meyer as well the other members
of the ECMA TC39-TG4 group normalizing committee [1].

9. REFERENCES

[1] ECcMA normalisation group for the new eiffel language
definition tc39-tg4 (to appear in the middle of 2005.).

[2] K. Arnold and J. Gosling. The Java Programming
Language. Addison-Wesley, Reading, Massachusetts,
USA, 1996.

[3] K. Bruce, L. Cardelli, G. Castagna, T. H. O. Group,
G. Leavens, and B. Pierce. On Binary Methods.
Theory and Practice of Object Systems, 1(3), 1996.

[4] G. Castagna. Covariance and Contravariance: Conflict
Without a Cause. Theory and Practice of Object
Systems, 17(3):431-447, 1995.

[5] G. Castagna. Object-Oriented Programming: A
Unified Foundation. Progress in Theoretical Computer
Science. Birkduser, Boston, 1996.

[6] D. Colnet, P. Ribet, C. Adrian, V. Croizier, and
F. Merizen. Web site of smarteiffel, the GNU eiffel
compiler tools and libraries.
http://SmartEiffel.loria.fr.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addisson-Wesley, Reading,
Massachusetts, 1995. ISBN 0201633612.

[8] B. Gomes, D. Stoutamire, B. Vaysman, and
H. Klawitter. Sather 1.1: A language manual.
http://www.icsi.berkeley.edu/ sather/
Documentation/LanguageDescription/%webmaker/
DescriptionX2Erem-chapters-1.html.

[9] A. Holub. Why extends is evil.
http://www.javaworld.com/javaworld/jw-08-2003/
jw-0801-toolbox_p.html, 2003.

[10] J. M. Jézéquel, M. Train, and C. Mingins. Design
Patterns and Contracts. Addisson-Wesley, 1999. ISBN
0-201-30959-9.

[11] B. Liskov. Keynote address - data abstraction and
hierarchy. SIGPLAN Not., 23(5):17-34, 1988.

[12] B. Meyer. Beware of polymorphic catcalls.
http://archive.eiffel.com/doc/manuals/
technology/typing/cat.html.

[13] B. Meyer. Eiffel, The Language. Prentice Hall, 1994.

[14] N. Nystrom, S. Chong, and A. C. Myers. Scalable
extensibility via nested inheritance. In OOPSLA ’04:
Proceedings of the 19th annual ACM SIGPLAN
Conference on Object-oriented programming, systems,
languages, and applications, pages 99-115. ACM
Press, 2004.

[15] O. Zendra and D. Colnet. Coping with aliasing in the
GNU Eiffel Compiler implementation. Software
Pratice and Experience (SP&E), 31(6):601-613, 2001.
J. Wiley € Sons.

