Trees | Indices | Help |
|
---|
|
Module containing the calculator for metric matrix calculation, e.g. similarity and distance matrices
|
|||
|
|||
|
|||
|
|
|||
__package__ = None hash(x) |
|
GetEuclideanDistMat( (AtomPairsParameters)arg1) -> object : Compute the distance matrix from a descriptor matrix using the Euclidean distance metric ARGUMENTS: descripMat - A python object of any one of the following types 1. A numeric array of dimensions n by m where n is the number of items in the data set and m is the number of descriptors 2. A list of Numeric Vectors (or 1D arrays), each entry in the list corresponds to descriptor vector for one item 3. A list (or tuple) of lists (or tuples) of values, where the values can be extracted to double. RETURNS: A numeric one-dimensional array containing the lower triangle elements of the symmetric distance matrix C++ signature : _object* GetEuclideanDistMat(boost::python::api::object) |
GetTanimotoDistMat( (AtomPairsParameters)arg1) -> object : Compute the distance matrix from a list of BitVects using the Tanimoto distance metric ARGUMENTS: bitVectList - a list of bit vectors. Currently this works only for a list of explicit bit vectors, needs to be expanded to support a list of SparseBitVects RETURNS: A numeric 1 dimensional array containing the lower triangle elements of the symmetric distance matrix C++ signature : _object* GetTanimotoDistMat(boost::python::api::object) |
GetTanimotoSimMat( (AtomPairsParameters)arg1) -> object : Compute the similarity matrix from a list of BitVects ARGUMENTS: bitVectList - a list of bit vectors. Currently this works only for a list of explicit bit vectors, needs to be expanded to support a list of SparseBitVects RETURNS: A numeric 1 dimensional array containing the lower triangle elements of the symmetric similarity matrix C++ signature : _object* GetTanimotoSimMat(boost::python::api::object) |
Trees | Indices | Help |
|
---|
Generated by Epydoc 3.0.1 on Thu Aug 25 09:14:52 2016 | http://epydoc.sourceforge.net |