CBitVector | Binary constant defined both for 32 and 64 bits |
►CBlackboxArchetype | Showing the member functions provided by all blackbox matrix classes |
CMatrixBlackbox< _Field, _Matrix, _Vector > | Matrix black box |
►CBlackboxBlockContainerBase< _Field, _Blackbox > | A base class for BlackboxBlockContainer |
CBlackboxBlockContainer< _Field, _Blackbox > | No doc |
CBlackboxBlockContainerRecord< _Field, _Blackbox > | No doc |
CBlackboxBlockContainerBase< Field, Blackbox > | |
CBlackboxContainerBase< Field, Blackbox > | A base class for BlackboxContainer |
►CBlackboxContainerBase< Field, _Blackbox > | |
CBlackboxContainer< Field, _Blackbox, RandIter > | Limited doc so far |
CBlackboxContainerSymmetric< Field, _Blackbox, RandIter > | See base class for doc |
CBlackboxContainerSymmetrize< Field, _Blackbox, RandIter > | Symmetrizing iterator (for rank computations) |
►CBlackboxContainerBase< Field, Vector > | |
CDenseContainer< Field, Vector, RandIter > | Limited doc so far |
CBlackboxContainerBase< LinBox::Modular< uint32_t >, Blackbox > | |
CBlackboxFactory< Field, Blackbox > | A tool for computations with integer and rational matrices |
►CBlackboxFactory< Field, SparseMatrix< Field, Row > > | |
CSparseMatrixFactory< Field, BElement, Row, BRow > | Sparse matrix factory This class inherits BlackboxFactory and provides a method for using a SparseMatrixBase object with integer or rational data type as input to the high-level integer and rational solutions functions |
CBlackboxSpecifier | BlackboxSpecifier |
►CBlasMatrix< _Field > | Dense matrix representation |
CTriangularBlasMatrix< _Field > | Triangular BLAS matrix |
CBlasMatrix< Domain > | |
CBlasMatrix< Element > | |
CBlasMatrix< Field > | |
CBlasMatrix< LinBox::Modular< double > > | |
CBlasMatrix< LinBox::Modular< uint32_t > > | |
CBlasMatrix< LinBox::UnparametricField< Element > > | |
CBlasMatrix< MultiModDouble > | No Doc |
CBlasMatrixDomain< Field > | Interface for all functionnalities provided for BlasMatrix |
CBlasMatrixDomain< _Field > | |
CBlasMatrixDomain< LinBox::Modular< uint32_t > > | |
CBlasMatrixDomainAddin< Field, Operand1, Operand2 > | C += A |
CBlasMatrixDomainInv< MultiModDouble, BlasMatrix< MultiModDouble > > | Specialisation for MultiModDouble |
CBlasMatrixDomainSubin< Field, Operand1, Operand2 > | C -= A |
CBlasPermutation< _UnsignedInt > | Lapack-style permutation |
CBlasPermutation< size_t > | |
►CBlasSubmatrix< _Field > | Dense Submatrix representation |
CSubmatrix< BlasMatrix< _Field >, VectorCategories::DenseVectorTag > | Specialization for BlasMatrix |
CBlockHankelLiftingContainer< _Ring, _Field, _IMatrix, _FMatrix, _Block > | Block Hankel LiftingContianer |
CBlockLanczosSolver< Field, Matrix > | Block Lanczos iteration |
CBlockMasseyDomain< _Field, _Sequence > | Compute the linear generator of a sequence of matrices |
CBlockMasseyDomain< Field, LinBox::BlackboxBlockContainerRecord > | |
CBlockWiedemannLiftingContainer< _Ring, _Field, _IMatrix, _FMatrix > | Block Wiedemann LiftingContianer |
CBooleanSwitch | Boolean switch object |
CBooleanSwitchFactory | Boolean switch factory |
CButterfly< _Field, Switch > | Switching Network based BlackBox Matrix |
CCekstvSwitch< Field > | Butterfly switch object from preconditioner paper |
CCekstvSwitchFactory< Field > | Cekstv switch factory |
►CChineseRemainderSeq< CRABase > | No doc |
CChineseRemainder< CRABase > | Wrapper around OMP/SEQ version of ChineseRemainderXXX<CRABase> |
CClassifyRing< Field > | Default ring category |
CCommentator | Give information to user during runtime |
CCompose< _Blackbox1, _Blackbox2 > | Blackbox of a product: , i.e |
CCompose< _Blackbox, _Blackbox > | Specialization for _Blackbox1 = _Blackbox2 |
CCompose< LinBox::Submatrix< Blackbox >, LinBox::Transpose< LinBox::Submatrix< Blackbox > > > | |
CCompose< LinBox::Transpose< LinBox::Submatrix< Blackbox > >, LinBox::Submatrix< Blackbox > > | |
CComposeOwner< _Blackbox1, _Blackbox2 > | Blackbox of a product: , i.e |
CComposeTraits< IMatrix > | Used in ..., for example |
CComposeTraits< BlasMatrix< Field > > | Used in smith-binary, for example |
CBlasSubmatrix< _Field >::ConstIndexedIterator | Raw Indexed Iterator (const version) |
CBlasSubmatrix< _Field >::ConstIterator | Raw Iterators (const version) |
CCRASpecifier | CRASpecifier |
CCRATraits | Solve using CRA (iterations uses SolveMethod) |
CDenseRowsMatrix< _Row > | Dense row-wise matrix container |
CDiagonal< Field, Trait > | Random diagonal matrices are used heavily as preconditioners |
CDiagonal< _Field, VectorCategories::DenseVectorTag > | Specialization of Diagonal for application to dense vectors |
CDiagonal< _Field, VectorCategories::SparseAssociativeVectorTag > | Specialization of Diagonal for application to sparse associative vectors |
CDiagonal< _Field, VectorCategories::SparseSequenceVectorTag > | Specialization of Diagonal for application to sparse sequence vectors |
CDiagonal< Field > | |
CDif< _Blackbox1, _Blackbox2 > | Blackbox of a difference: C := A - B , i.e Cx = Ax - Bx |
CDiophantineSolver< QSolver > | DiophantineSolver<QSolver> creates a diophantine solver using a QSolver to generate rational solutions |
CDirectSum< _Blackbox1, _Blackbox2 > | If C = DirectSum(A, B) and y = xA and z = wB, then (y,z) = (x,w)C |
CDirectSum< Companion< _Field > > | |
CDixonLiftingContainer< _Ring, _Field, _IMatrix, _FMatrix > | Dixon Lifting Container |
CDotProductDomain< Modular< uint16_t > > | Specialization of DotProductDomain for unsigned short modular field |
CDotProductDomain< Modular< uint32_t > > | Specialization of DotProductDomain for uint32_t modular field |
CDotProductDomain< Modular< uint8_t > > | Specialization of DotProductDomain for unsigned short modular field |
CDotProductDomain< ModularBalanced< double > > | Specialization of DotProductDomain |
►CEarlySingleCRA< Domain_Type > | NO DOC |
CEarlyMultipCRA< Domain_Type > | NO DOC |
CEchelonFormDomain< Field > | Echelon form domain |
CBlockRing< _Field >::Element | Default constructable wrapper for BlasMatrix |
►CElementAbstract | Abstract element base class, a technicality |
CElementEnvelope< Ring > | |
CElementEnvelope< Field > | Adaptor from archetypical interface to abstract interface, a technicality |
CElementArchetype | Field and Ring element interface specification and archetypical instance class |
CEliminationSpecifier | EliminationSpecifier |
CEliminator< Field, Matrix > | Elimination system |
CEliminator< LinBox::Modular< uint32_t >, LinBox::ZeroOne > | |
►CException | This is the exception class in LinBox |
CalgoException | Algorithmic exception |
CBadInputException | The input is not as expected |
CIrrecuperableException | Something bad an unexpected happened |
CNotImplementedYetException | Not implemented yet |
►CFieldAbstract | Field base class |
►CFieldEnvelope< Ring > | |
CRingEnvelope< Ring > | Implement the ring archetype to minimize code bloat |
CFieldEnvelope< Field > | Derived class used to implement the field archetypeHelps to minimize code bloat |
►CRingAbstract | Abstract ring base class |
CRingEnvelope< Ring > | Implement the ring archetype to minimize code bloat |
CFieldAXPY< Field > | FieldAXPY object |
CFieldAXPY< Domain > | |
CFieldAXPY< GF2 > | |
CFieldAXPY< GivaroZpz< Givaro::Std16 > > | |
CFieldAXPY< GivaroZpz< Givaro::Std32 > > | |
CFieldAXPY< LinBox::Modular< double > > | |
CFieldAXPY< LinBox::Modular< uint32_t > > | |
CFieldAXPY< LinBox::ParamFuzzy > | |
CFieldAXPY< Modular< _Element > > | Specialization of FieldAXPY for parameterized modular field |
CFieldAXPY< Modular< double > > | |
CFieldAXPY< Modular< float > > | |
CFieldAXPY< Modular< int16_t > > | |
CFieldAXPY< Modular< int32_t > > | |
CFieldAXPY< Modular< int64_t > > | |
CFieldAXPY< Modular< int8_t > > | |
CFieldAXPY< Modular< uint16_t > > | Specialization of FieldAXPY for uint16_t modular field |
CFieldAXPY< Modular< uint32_t > > | Specialization of FieldAXPY for unsigned short modular field |
CFieldAXPY< Modular< uint8_t > > | Specialization of FieldAXPY for uint8_t modular field |
CFieldAXPY< ModularBalanced< double > > | Specialization of FieldAXPY |
CFieldAXPY< ModularBalanced< float > > | |
CFieldAXPY< ModularBalanced< int32_t > > | |
CFieldAXPY< ModularBalanced< int64_t > > | |
CFieldAXPY< ModularCrooked< double > > | |
CFieldAXPY< PIR_ntl_ZZ_p > | |
CFieldAXPY< PIRModular< int32_t > > | |
CFieldAXPY< Ring > | |
CFieldAXPY< UnparametricField< integer > > | NO DOc |
►CFieldInterface | This field base class exists solely to aid documentation organization |
CGivaroZpz< Givaro::Std16 > | |
CGivaroZpz< Givaro::Std32 > | |
CBlockRing< _Field > | Elements are wrapped BlasMatrix objects |
►CFieldArchetype | Field specification and archetypical instance |
CRingArchetype | Specification and archetypic instance for the ring interfaceThe RingArchetype and its encapsulated element class contain pointers to the RingAbstract and its encapsulated ring element, respectively |
CGivaroExtension< BaseField > | This template class is defined to be in phase with the LinBox archetype |
CGivaroExtension< LinBox::GivaroGfq > | This template class is define just to be in phase with the LinBox archetype |
CGivaroGfq | Wrapper of Givaro's GFqDom<int32_t> class |
CGivaroMontg | Wrapper of Givaro's Givaro::Montgomery< Givaro::Std32> |
CGivaroZpz< TAG > | Wrapper of Givaro's ZpzDom |
CLidiaGfq | Defines the Galois Field GF(pk) |
CModular< double > | Standard representation of |
CModular< int16_t > | Specialization of Modular to short element type with efficient dot product |
CModular< int32_t > | Specialization of Modular to int32_t element type with efficient dot product |
CModular< int64_t > | Specialization of Modular to int64_t element type with efficient dot product |
CModular< int8_t > | Specialization of Modular to signed 8 bit element type with efficient dot product |
CModular< uint16_t > | Specialization of class Modular for uint16_t element type |
CModular< uint32_t > | Specialization of class Modular for uint32_t element type |
CModular< uint8_t > | Allows compact storage when the modulus is less than 2^8 |
CModularBalanced< double > | Centered representation of |
CParamFuzzy | Abstract parameterized field of "fuzzy" doubles |
CFieldIO< _Element > | Dummy field for conceptually unclear io |
CFieldTraits< Field > | FieldTrait |
Cfoobar< LocalPIR > | Test 1: Invariant factors of random dense matrices |
►CFullMultipCRA< Domain_Type > | NO DOC.. |
CEarlyMultipCRA< Domain_Type > | NO DOC |
CFullMultipBlasMatCRA< Domain_Type > | NO DOC |
CFullMultipFixedCRA< Domain_Type > | Chinese Remaindering Algorithm for multiple residues |
►CGaussDomain< _Field > | Repository of functions for rank by elimination on sparse matrices |
CPowerGaussDomain< _Field > | Repository of functions for rank modulo a prime power by elimination on sparse matrices |
CGaussDomain< Field > | |
►CGenericTag | Generic ring |
CIntegerTag | If it is isomorphic to Z |
CModularTag | If it is isomorphic to Z/mZ, for some m or its extensions |
CRationalTag | If it is isomorphic to Q |
►CVectorCategories::GenericVectorTag | Generic vector (no assumption is made) |
►CVectorCategories::SparseVectorTag | Sparse vectors (general) |
CVectorCategories::SparseAssociativeVectorTag | Sparse vectors (general) |
CVectorCategories::SparseParallelVectorTag | Sparse vectors (general) |
CVectorCategories::SparseSequenceVectorTag | Sparse vectors (general) |
►CVectorCategories::SparseZeroOneVectorTag | Sparse GF2 vectors |
►CVectorCategories::DenseVectorTag | Dense vector (GF2 and general) |
CVectorCategories::DenseZeroOneVectorTag | Sparse vectors (general) |
CGivaroField< BaseField > | Give LinBox fields an allure of Givaro FieldsThis class adds the necessary requirements allowing the construction of an extension of a LinBox field or a givaro polynomial of a LinBox field .. |
CGivaroField< LinBox::GF2 > | Give LinBox fields an allure of Givaro FieldsThis class adds the necessary requirements allowing the construction of an extension of a LinBox field |
CGivaroRnsFixedCRA< Domain_Type > | NO DOC.. |
CGivPolynomialRing< Domain, StorageTag > | Polynomials |
CGmpRandomPrime | Generating random prime integers, using the gmp library |
CGMPRationalElement | Elements of GMP_Rationals |
CHilbert_JIT_Entry< _Field > | The object needed to build a Hilbert matrix as a JIT matrix |
CHom< Source, Target > | Map element of source ring(field) to target ringAn instance of Hom is a homomorphism from a ring of type Source to a ring (usually field) of type Target |
CHom< BaseField, GivaroExtension< BaseField > > | NO DOC |
CHybridSpecifier | HybridSpecifier |
CIMLTraits | IML wrapper |
CInconsistentSystem< Vector > | Exception thrown when the system to be solved is inconsistent |
CindexDomain | Class used for permuting indices |
CBlasMatrix< _Field >::IndexedIterator | Indexed Iterator |
CBlasSubmatrix< _Field >::IndexedIterator | Raw Indexed Iterator |
CZeroOne< _Field >::IndexIterator | IndexIterator |
CZeroOne< GF2 >::IndexIterator | IndexIterator |
CInvalidMatrixInput | Exception class for invalid matrix input |
CInverse< Blackbox > | A Blackbox for the inverse |
CInverse< LinBox::Compose< LinBox::Submatrix< Blackbox >, LinBox::Transpose< LinBox::Submatrix< Blackbox > > > > | |
CInverse< LinBox::Compose< LinBox::Transpose< LinBox::Submatrix< Blackbox > >, LinBox::Submatrix< Blackbox > > > | |
CBlasSubmatrix< _Field >::Iterator | Raw Iterators |
CZeroOne< _Field >::Iterator | Raw iterator |
CZeroOne< GF2 >::Iterator | Raw iterator |
CJIT_Matrix< _Field, JIT_EntryGenerator > | Example of a blackbox that is space efficient, though not time efficient |
►CJIT_Matrix< _Field, Hilbert_JIT_Entry< _Field > > | |
CHilbert< _Field > | Example of a blackbox that is space efficient, though not time efficient |
CLABlockLanczosSolver< Field, Matrix > | Biorthogonalising block Lanczos iteration |
CLanczosSolver< Field, Vector > | Solve a linear system using the conjugate Lanczos iteration |
CLargeDouble | NO DOC |
CLastInvariantFactor< _Ring, _Solver > | This is used in a Smith Form algorithm |
ClatticeMethod | NTL methods |
CLinboxError | Base class for execption handling in LinBox |
CLinBoxTag | Structure for tags |
CLocal2_32 | Fast arithmetic mod 2^32, including gcd |
CLQUPMatrix< Field > | LQUP factorisation |
CMasseyDomain< Field, Sequence > | Berlekamp/Massey algorithm |
CMatrixArchetype< _Element > | Directly-represented matrix archetype |
CMatrixCategories | For specializing matrix arithmetic |
CMatrixDomain< GF2 > | Specialization of MatrixDomain for GF2 |
CMatrixPermutation< _UnsignedInt > | Permutation classique |
CMatrixRank< _Ring, _Field, _RandomPrime > | Compute the rank of an integer matrix in place over a finite field by Gaussian elimination |
CMatrixStream< Field > | MatrixStream |
CMatrixStream< LinBox::Modular< uint32_t > > | |
CMatrixStreamReader< Field > | An abstract base class to represent readers for specific formats |
CMatrixStreamReader< LinBox::Modular< uint32_t > > | |
CMethod | Method specifiers for controlling algorithm choice |
CMGBlockLanczosSolver< Field, Matrix > | Block Lanczos iteration |
CModular< _Element > | Prime fields of positive characteristic implemented directly in LinBox |
CModular< Element > | |
CModular< float > | |
CModularBalancedRandIter< Element > | Random field base element generator |
CModularCrookedRandIter< Element > | Random field base element generator |
CModularRandIter< Element > | Random field base element generator |
CMoorePenrose< Blackbox > | Generalized inverse of a blackbox |
►CMVProductDomain< Field > | Helper class to allow specializations of certain matrix-vector products |
CMatrixDomain< Field > | Class of matrix arithmetic functions |
►CMVProductDomain< Domain > | |
CMatrixDomain< Domain > | |
►CMVProductDomain< LinBox::Modular< double > > | |
CMatrixDomain< LinBox::Modular< double > > | |
►CMVProductDomain< LinBox::Modular< uint32_t > > | |
CMatrixDomain< LinBox::Modular< uint32_t > > | |
CMVProductDomain< Modular< uint16_t > > | Specialization of MVProductDomain for uint16_t modular field |
CMVProductDomain< Modular< uint32_t > > | Specialization of MVProductDomain for uint32_t modular field |
CMVProductDomain< Modular< uint8_t > > | Specialization of MVProductDomain for uint8_t modular field |
Cnaive | Toom-Cook method |
CNoHomError | Error object for attempt to establish a Hom that cannot exist |
CNonzeroRandIter< Field, RandIter > | Random iterator for nonzero random numbers |
CNonzeroRandIter< LinBox::Modular< uint32_t >, RandIter > | |
CNTL_ZZ | Integer ring |
►CNTL_ZZ_p | Wrapper of zz_p from NTL |
CPIR_ntl_ZZ_p | Extend Wrapper of ZZ_p from NTL |
►CNTL_zz_p | Long ints modulo a positive integer |
CNTL_PID_zz_p | Extend Wrapper of zz_p from NTL |
CNTL_ZZ_pE | Wrapper of ZZ_pE from NTL Define a parameterized class to handle easily UnparametricField<NTL::ZZ_pE> field |
►CNTL_zz_pE_Initialiser | Use ZZ_pEBak mechanism too ? |
CNTL_zz_pE | Zz_pE Define a parameterized class to easily handle UnparametricField<NTL::zz_pE> field |
CNTL_zz_pX | Ring (in fact, a unique factorization domain) of polynomial with coefficients in class NTL_zz_p (integers mod a wordsize prime) |
CNTL_ZZ_pX | Ring (in fact, a unique factorization domain) of polynomial with coefficients in class NTL_ZZ_p (integers mod a wordsize prime) |
CNullMatrix | This is a representation of the 0 by 0 empty matrix which does not occupy memory |
COneInvariantFactor< _Ring, _LastInvariantFactor, _Compose, _RandomMatrix > | Limited doc so far |
CPair< I, T > | Pair of I and T : struct { column index, value } |
CPermutation< _Field, _Storage > | Size is n |
CPermutation< _Field > | |
CPID_double | NO DOC |
CPID_integer | Domain for integer operations |
CPlotStyle::Plot | What style of graphic : histogram ? graph ? |
CPlotData< NAM > | The raw data to plot |
CPlotGraph< NAM > | The graph |
CPlotStyle | Represents a table of values to plot |
CPolynomialBB< Blackbox, Poly > | Represent the matrix P(A) where A is a blackbox and P a polynomial |
CPolynomialBBOwner< Blackbox, Poly > | Represent the matrix P(A) where A is a blackbox and P a polynomial |
CPowerGaussDomainPowerOfTwo< UnsignedIntType > | Repository of functions for rank modulo a prime power by elimination on sparse matrices |
CPowerOfTwoModular< Ints > | Ring of elements modulo some power of two |
CPreconditionFailed | A precondition failed |
CPrimeStream< Element > | Prime number stream |
CPowerOfTwoModular< Ints >::RandIter | Random iterator generator type |
►CRandIterAbstract | Random field element generator |
CRandIterEnvelope< Field > | Random field base element generator |
CRandIterArchetype | Random field element generator archetype |
CRandomDenseMatrix< Randiter, Field > | Random Dense Matrix builder |
CRandomIntegerIter< _Unsigned > | Random Integer Iterator |
CRandomIntegerIterator< _Unsigned > | Random Prime Generator |
CRandomPrimeIter | Random Prime Iterator |
CRandomPrimeIterator | Random Prime Generator |
CRankBuilder | Random method for constructing rank |
CRationalReconstruction< _LiftingContainer, RatRecon > | Limited doc so far |
CRationalRemainder< RatCRABase > | Chinese remainder of rationals |
CRationalRemainder2< RatCRABase, RatRecon > | Chinese remainder of rationals |
CRationalSolver< Ring, Field, RandomPrime, MethodTraits > | Interface for the different specialization of p-adic lifting based solvers |
CRationalSolver< Ring, Field, RandomPrime, BlockHankelTraits > | Block Hankel |
CRationalSolver< Ring, Field, RandomPrime, BlockWiedemannTraits > | Partial specialization of p-adic based solver with block Wiedemann algorithm |
CRationalSolver< Ring, Field, RandomPrime, DixonTraits > | Partial specialization of p-adic based solver with Dixon algorithm |
CRationalSolver< Ring, Field, RandomPrime, SparseEliminationTraits > | Sparse LU |
CRationalSolver< Ring, Field, RandomPrime, WanTraits > | Solver using a hybrid Numeric/Symbolic computation |
CRationalSolver< Ring, Field, RandomPrime, WiedemannTraits > | Partial specialization of p-adic based solver with Wiedemann algorithm |
CRawVector< Element > | Canonical vector types |
►CRawVector< Domain::Element > | |
CVector< Domain > | |
►CRawVector< LinBox::Modular< uint32_t >::Element > | |
CVector< LinBox::Modular< uint32_t > > | |
►CRawVector< LinBox::PID_integer::Element > | |
CVector< LinBox::PID_integer > | |
►CRawVector< Ring::Element > | |
CVector< Ring > | Vector ?? |
CRebind< XXX, U > | Used in support of Hom, MatrixHom |
CBlasMatrix< _Field >::rebind< _Tp1 > | Rebind operator |
CRebind< std::vector< T >, U > | Rebind |
CReverseVector< Vector > | Reverse vector class This class wraps an existing vector type and reverses its direction |
CRingInterface | This ring base class exists solely to aid documentation organization |
CRNS< Unsigned > | RNS |
CScalarMatrix< _Field > | Blackbox for aI |
CSigmaBasis< _Field > | Implementation of -basis (minimal basis) |
CSmithFormBinary< _Ring, _oneInvariantFactor, _Rank > | Compute Smith form |
CSmithFormIliopoulos | This is Iliopoulos' algorithm do diagonalize |
CSmithFormLocal< LocalPID > | Smith normal form (invariant factors) of a matrix over a local ring |
CSolveFailed | Exception thrown when the computed solution vector is not a true solution to the system, but none of the problems cited below exist |
CSolverTraits | Solver traits |
CSparse_Vector< T, I > | Vector< Pair<T,I> > and actualsize |
CSparseLULiftingContainer< _Ring, _Field, _IMatrix, _FMatrix > | SparseLULiftingContainer |
CSparseMatrixBase< _Element, _Row, Trait > | Sparse matrix container This class acts as a generic row-wise container for sparse matrices |
►CSparseMatrixBase< _Field::Element, _Row > | |
CSparseMatrix< _Field, _Row > | Vector of sparse rows |
CSparseMatrixBase< BElement, BRow > | |
CSquarize< Blackbox > | Transpose matrix without copying |
CSubiterator< Iterator > | Subvector iterator class provides striding iterators |
CSubiterator< typename Rep::const_iterator > | |
CSubiterator< typename Rep::iterator > | |
CSubmatrix< Blackbox, Trait > | Leading principal minor of existing matrix without copying |
CSubmatrix< Blackbox > | |
►CSubmatrix< Blackbox, VectorCategories::DenseVectorTag > | Specialization for dense vectors |
CSubmatrix< Blackbox, VectorCategories::DenseZeroOneVectorTag > | Specialization for dense ZeroOne vectors |
CSubmatrixOwner< Blackbox, VectorCategories::DenseVectorTag > | Specialization for dense vectors |
CSubvector< Iterator, ConstIterator > | Dense subvectorThis class provides a statically sized subvector of a random access container (such as std::vector, deque) |
CSubvector< Subiterator< typename Rep::const_iterator > > | |
CSubvector< Subiterator< typename Rep::iterator > > | |
CSubvector< typename Rep::const_iterator > | |
CSubvector< typename Rep::iterator, typename Rep::const_iterator > | |
CSum< _Blackbox1, _Blackbox2 > | Blackbox of a matrix sum without copying |
CSumOwner< _Blackbox1, _Blackbox2 > | Blackbox of a matrix sum without copying |
CSylvester< _Field > | This is a representation of the Sylvester matrix of two polynomials |
CPlotStyle::Term | What format the plot should be in? |
CTernaryLattice | NO DOC |
CToeplitz< _CField, _PField > | This is the blackbox representation of a Toeplitz matrix |
CToeplitz< _Field > | |
CToeplitz< typename _PField::CoeffField, _PField > | Specialization for when the field of matrix elements is the same as the coefficient field of the polynomial field |
CTranspose< Blackbox > | Transpose matrix without copying |
CTranspose< LinBox::Submatrix< Blackbox > > | |
CTransposedBlasMatrix< Matrix > | TransposedBlasMatrix |
CTransposeMatrix< Matrix, Trait > | Matrix transpose |
CTransposeMatrix< LinBox::SparseMatrix< _Field, _Row > > | |
CTransposeOwner< Blackbox > | Transpose matrix without copying |
►CTriplesBB< _Field > | Wrapper for NAG Sparse Matrix format |
CCompanion< _Field > | Companion matrix of a monic polynomial |
CUnparametricRandIter< K > | Unparameterized random field element generator template |
CUnparametricRandIter< NTL::ZZ_p > | Constructor for random field element generator |
CVectorCategories | List of vector categories |
CVectorFraction< Domain > | VectorFraction<Domain> is a vector of rational elements with common reduced denominator |
CVectorFraction< Ring > | |
►CVectorStream< _Vector > | Vector factory |
CConstantVectorStream< _Vector > | Constant vector factory |
CRandomDenseStream< Field, _Vector, RandIter, Trait > | Random dense vector stream |
CRandomDenseStream< Field, _Vector, RandIter, VectorCategories::DenseVectorTag > | Specialization of random dense stream for dense vectors |
CRandomSparseStream< Field, _Vector, RandIter, Trait > | Random sparse vector stream |
CRandomSparseStream< Field, _Vector, RandIter, VectorCategories::DenseVectorTag > | Specialization of RandomSparseStream for dense vectors |
CRandomSparseStream< Field, _Vector, RandIter, VectorCategories::SparseAssociativeVectorTag > | Specialization of RandomSparseStream for sparse associative vectors |
CRandomSparseStream< Field, _Vector, RandIter, VectorCategories::SparseParallelVectorTag > | Specialization of RandomSparseStream for sparse parallel vectors |
CRandomSparseStream< Field, _Vector, RandIter, VectorCategories::SparseSequenceVectorTag > | Specialization of RandomSparseStream for sparse sequence vectors |
CStandardBasisStream< Field, _Vector, Trait > | Stream for |
CStandardBasisStream< Field, _Vector, VectorCategories::DenseVectorTag > | Specialization of standard basis stream for dense vectors |
CStandardBasisStream< Field, _Vector, VectorCategories::SparseAssociativeVectorTag > | Specialization of standard basis stream for sparse associative vectors |
CStandardBasisStream< Field, _Vector, VectorCategories::SparseParallelVectorTag > | Specialization of standard basis stream for sparse parallel vectors |
CStandardBasisStream< Field, _Vector, VectorCategories::SparseSequenceVectorTag > | Specialization of standard basis stream for sparse sequence vectors |
CVectorStream< BitVector > | |
CVectorTraits< Vector > | Vector traits template structure |
CWiedemannLiftingContainer< _Ring, _Field, _IMatrix, _FMatrix, _FPolynomial > | Wiedemann LiftingContianer |
CWiedemannSolver< Field > | Linear system solvers based on Wiedemann's method |
►CZeroOne< _Field > | Time and space efficient representation of sparse {0,1}-matrices |
CTransposedBlasMatrix< TransposedBlasMatrix< Matrix > > | TransposedBlasMatrix |
CZeroOne< GF2 > | Time and space efficient representation of sparse matrices over GF2 |
CZeroOne< PID_integer > | |
CZOQuad< _Field > | A class of striped or block-decomposed zero-one matrices |