This function currently just finds the elements whose boundary give the product of every pair of cycles that are chosen as generators. Eventually, all higher Massey operations will also be computed. The maximum degree of a generating cycle is specified in the option GenDegreeLimit, if needed.
This is an example of a Golod ring. It is Golod since it is the Stanley-Reisner ideal of a flag complex whose 1-skeleton is chordal [Jollenbeck-Berglund].
i1 : Q = ZZ/101[x_1..x_6]
o1 = Q
o1 : PolynomialRing
|
i2 : I = ideal (x_3*x_5,x_4*x_5,x_1*x_6,x_3*x_6,x_4*x_6)
o2 = ideal (x x , x x , x x , x x , x x )
3 5 4 5 1 6 3 6 4 6
o2 : Ideal of Q
|
i3 : R = Q/I
o3 = R
o3 : QuotientRing
|
i4 : A = koszulComplexDGA(R)
o4 = {Ring => R }
Underlying algebra => R[T , T , T , T , T , T ]
1 2 3 4 5 6
Differential => {x , x , x , x , x , x }
1 2 3 4 5 6
isHomogeneous => true
o4 : DGAlgebra
|
i5 : isHomologyAlgebraTrivial(A,GenDegreeLimit=>3)
Computing generators in degree 1 : -- used 0.0105942 seconds
Computing generators in degree 2 : -- used 0.0297762 seconds
Computing generators in degree 3 : -- used 0.0554161 seconds
o5 = true
|
i6 : cycleList = getGenerators(A)
Computing generators in degree 1 : -- used 0.00177406 seconds
Computing generators in degree 2 : -- used 0.014651 seconds
Computing generators in degree 3 : -- used 0.015638 seconds
Computing generators in degree 4 : -- used 0.0076537 seconds
Computing generators in degree 5 : -- used 0.00684372 seconds
Computing generators in degree 6 : -- used 0.00669455 seconds
o6 = {x T , x T , x T , x T , x T , -x T T , -x T T , -x T T , -x T T , -
5 4 5 3 6 4 6 3 6 1 6 1 3 5 3 4 6 3 4 6 1 4
------------------------------------------------------------------------
x T T + x T T , - x T T + x T T , x T T T , x T T T - x T T T }
6 4 5 5 4 6 6 3 5 5 3 6 6 1 3 4 6 3 4 5 5 3 4 6
o6 : List
|
i7 : tmo = findTrivialMasseyOperation(A)
Computing generators in degree 1 : -- used 0.00170875 seconds
Computing generators in degree 2 : -- used 0.015089 seconds
Computing generators in degree 3 : -- used 0.0154683 seconds
Computing generators in degree 4 : -- used 0.00149574 seconds
Computing generators in degree 5 : -- used 0.00143532 seconds
Computing generators in degree 6 : -- used 0.00143408 seconds
o7 = {{3} | 0 0 0 0 0 0 0 0 0 0 |, {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 -x_6 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 -x_6 | {4} | x_6 0 0 0 0
{3} | 0 0 0 0 0 0 -x_6 0 0 0 | {4} | 0 0 x_6 0 0
{3} | 0 0 0 0 0 0 0 0 -x_6 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 | {4} | 0 0 0 0 0
{3} | 0 0 0 0 0 0 0 0 0 0 |
{3} | -x_5 0 x_6 -x_6 0 0 0 0 0 0 |
{3} | 0 0 0 0 0 -x_6 0 0 0 0 |
{3} | 0 0 0 0 0 0 0 0 0 0 |
{3} | 0 0 0 0 0 0 0 0 0 0 |
------------------------------------------------------------------------
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 x_6 0 0 0 0 0 0 -x_6 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 x_6 0 0 0 -x_6 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x_6 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x_5 0 x_6 0 -x_5 0 -x_6 0
------------------------------------------------------------------------
0 |, {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |,
0 | {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
0 | {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
0 | {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
0 | {5} | 0 0 0 0 0 0 x_6 0 0 0 0 0 0 -x_6 0 0 0 0 0 0 0 0 0 0 x_6 |
0 | {5} | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
0 |
0 |
x_6 |
0 |
0 |
0 |
0 |
0 |
0 |
------------------------------------------------------------------------
0, 0}
o7 : List
|
i8 : assert(tmo =!= null)
|
Below is an example of a Teter ring (Artinian Gorenstein ring modulo its socle), and the computation in Avramov and Levin’s paper shows that H(A) does not have trivial multiplication, hence no trivial Massey operation can exist.
i9 : Q = ZZ/101[x,y,z]
o9 = Q
o9 : PolynomialRing
|
i10 : I = ideal (x^3,y^3,z^3,x^2*y^2*z^2)
3 3 3 2 2 2
o10 = ideal (x , y , z , x y z )
o10 : Ideal of Q
|
i11 : R = Q/I
o11 = R
o11 : QuotientRing
|
i12 : A = koszulComplexDGA(R)
o12 = {Ring => R }
Underlying algebra => R[T , T , T ]
1 2 3
Differential => {x, y, z}
isHomogeneous => true
o12 : DGAlgebra
|
i13 : isHomologyAlgebraTrivial(A)
Computing generators in degree 1 : -- used 0.00731225 seconds
Computing generators in degree 2 : -- used 0.0161953 seconds
Computing generators in degree 3 : -- used 0.0148121 seconds
o13 = false
|
i14 : cycleList = getGenerators(A)
Computing generators in degree 1 : -- used 0.00131821 seconds
Computing generators in degree 2 : -- used 0.00981164 seconds
Computing generators in degree 3 : -- used 0.00985147 seconds
2 2 2 2 2 2 2 2 2 2 2
o14 = {x T , y T , z T , x*y z T , x*y z T T , x y*z T T , x*y z T T ,
1 2 3 1 1 2 1 2 1 3
-----------------------------------------------------------------------
2 2 2 2 2 2
x*y z T T T , x y*z T T T , x y z*T T T }
1 2 3 1 2 3 1 2 3
o14 : List
|
i15 : assert(findTrivialMasseyOperation(A) === null)
Computing generators in degree 1 : -- used 0.00132538 seconds
Computing generators in degree 2 : -- used 0.0102517 seconds
Computing generators in degree 3 : -- used 0.0101475 seconds
|