next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

               2                 2           2              2 2    2      2 
o2 = ideal (j*x  - m*v, e*q*x - g , a*l*s - i , e*i*j - d, k w  - u x, f*l m
     ------------------------------------------------------------------------
        2   2   2    2
     - s , g r*u  - l )

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

             2 2 3 2     2    4 4 4   4   4 4 3    2 3 2 3 3   4 4 2 3 4 4  
o3 = ideal (a c f g i*k*n  - h m p , d f*j q v  - b c g i w , d e n p r u  -
     ------------------------------------------------------------------------
      3 3 3 2   2 3 4 4 4 3 3 3 3 3
     g k s w , b c d e h i m p r x  - 1)

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous.