i1 : hy=matrix {{-1,0,-1,0,3,0,0,0,0},{-1,0,1,0,1,0,0,0,0},{1,0,1,0,-1,0,0,0,0},{1,0,-1,0,1,0,0,0,0}}; 4 9 o1 : Matrix ZZ <--- ZZ |
i2 : eq=matrix {{1,1,1,-1,-1,-1,0,0,0},{1,1,1,0,0,0,-1,-1,-1},{0,1,1,-1,0, 0,-1,0,0},{1,0,1,0,-1,0,0,-1,0},{1,1,0,0,0,-1,0,0,-1},{0,1,1,0,-1,0,0,0,-1},{1,1,0,0,-1,0,-1,0,0}}; 7 9 o2 : Matrix ZZ <--- ZZ |
i3 : cg=matrix {{1,0,0,0,0,0,0,0,0,2},{0,0,1,0,0,0,0,0,0,2},{0,0,0,0,0,0,1,0,0,2},{0,0,0,0,0,0,0,0,1,2}}; 4 10 o3 : Matrix ZZ <--- ZZ |
i4 : rc=normaliz({(hy,4),(eq,5),(cg,6)}); |
i5 : rc#"gen" o5 = | 2 4 0 0 2 4 4 0 2 | | 4 0 2 0 2 4 2 4 0 | | 0 4 2 4 2 0 2 0 4 | | 2 0 4 4 2 0 0 4 2 | | 2 2 2 2 2 2 2 2 2 | | 4 3 2 1 3 5 4 3 2 | | 2 5 2 3 3 3 4 1 4 | | 2 3 4 5 3 1 2 3 4 | | 4 1 4 3 3 3 2 5 2 | 9 9 o5 : Matrix ZZ <--- ZZ |
i6 : setNmzOption("allf",true); |
i7 : arc=normaliz(allComputations=>true,{(hy,4),(eq,5),(cg,6)}); |
i8 : arc#"gen" o8 = | 2 4 0 0 2 4 4 0 2 | | 4 0 2 0 2 4 2 4 0 | | 0 4 2 4 2 0 2 0 4 | | 2 0 4 4 2 0 0 4 2 | | 2 2 2 2 2 2 2 2 2 | | 2 3 4 5 3 1 2 3 4 | | 4 1 4 3 3 3 2 5 2 | | 4 3 2 1 3 5 4 3 2 | | 2 5 2 3 3 3 4 1 4 | 9 9 o8 : Matrix ZZ <--- ZZ |
i9 : arc#"ext" o9 = | 2 4 0 0 2 4 4 0 2 | | 4 0 2 0 2 4 2 4 0 | | 0 4 2 4 2 0 2 0 4 | | 2 0 4 4 2 0 0 4 2 | 4 9 o9 : Matrix ZZ <--- ZZ |
i10 : arc#"inv" o10 = HashTable{ => (1, 2, 2) } degree 1 elements => 0 embedding dim => 9 graded => true grading => (0, 0, 0, 0, 1, 0, 0, 0, 0) grading denom => 1 hilbert basis elements => 9 hilbert quasipolynomial denom => 2 hilbert series denom => (1, 2, 2) hilbert series num => (1, -1, 3, 1) index => 4 inhomogeneous => false multiplicity => 1 multiplicity denom => 1 number extreme rays => 4 number support hyperplanes => 4 rank => 3 size triangulation => 2 sum dets => 8 o10 : HashTable |