
CP2K Open Source Molecular Dynamics

This document is intended to be a recipe for building and running the Intel branch of CP2K which uses the Intel
Development Tools and the Intel runtime environment. Differences compared to CP2K/trunk may be incorporated
into the mainline version of CP2K at any time (and subsequently released). For example, starting with CP2K 3.0 an
LIBXSMM integration is available which is (optionally) substituting CP2K’s “libsmm” library.

Some additional reference can found under
https://groups.google.com/d/msg/cp2k/xgkJc59NKGw/U5v5FtzTBwAJ.

Getting the Source Code
The source code is hosted at GitHub and is supposed to represent the master version of CP2K in a timely fashion.
CP2K’s main repository is actually hosted at SourceForge but automatically mirrored at GitHub. The LIBXSMM
library can be found under https://github.com/hfp/libxsmm.

Build Instructions
In order to build CP2K/intel from source, one may rely on Intel Compiler 16 or 17 series. For a validated recipe
targeting “Haswell” (HSW):
git clone https://github.com/hfp/libxsmm.git
git clone --branch intel https://github.com/cp2k/cp2k.git cp2k.git
ln -s cp2k.git/cp2k cp2k
cd cp2k/makefiles
source /opt/intel/compilers_and_libraries_2017.1.132/linux/bin/compilervars.sh intel64
source /opt/intel/compilers_and_libraries_2017.0.098/linux/mkl/bin/mklvars.sh intel64
make ARCH=Linux-x86-64-intel VERSION=psmp AVX=2

In order to target for instance “Knights Landing” (KNL), use “AVX=3 MIC=1” instead of “AVX=2”. To build the
CP2K application, building LIBXSMM separately is not required (it will be build in an out-of-tree fashion as long
as the LIBXSMMROOT path is detected or supplied). Since CP2K 3.0, the mainline version (non-Intel branch) is
also supporting LIBXSMM. However, the LIBXSMM library needs to be built separately. For Intel MPI, usually any
version is fine. For product suites, the compiler and the MPI library are sourced in one step. To workaround known
issues, one may combine components from different suites. To further improve performance and versatility, one may
supply LIBINTROOT, LIBXCROOT, and ELPAROOT (see later sections about these libraries).

To further adjust CP2K at build time of the application, additional key-value pairs can be passed at make’s command
line (similar to ARCH=Linux-x86-64-intel and VERSION=psmp).

• SYM: set SYM=1 to include debug symbols into the executable e.g., helpful with performance profiling.
• DBG: set DBG=1 to include debug symbols, and to generate non-optimized code.

The arch-files for the versions “popt”, “sopt”, and “ssmp” are provided for convenience and are actually based on the
“x”-configuration; these files are using even more of the above key-value pairs (OMP, ACC, etc.) inside of the arch-file
but include Linux-x86-64-intel.x otherwise. Please note that the entire set of arch-files (arch/Linux-x86-64-intel.*)
can be also used with the CP2K/master code branch (trunk) by simply copying these files into the arch file folder
(Linux-x86-64-intel.x deals with this case internally).

Running the Application
Running the application may go beyond a single node, however for first example the pinning scheme and thread
affinitization is introduced. Running an MPI/OpenMP-hybrid application, a number of processes (MPI ranks) which
is half the number of cores might be a good starting point (below command could be for an HT-enabled dual-socket
system with 16 cores per processor and 64 hardware threads).
mpirun -np 16 \

-genv I_MPI_PIN_DOMAIN=auto -genv OMP_NUM_THREADS=4 \
-genv KMP_AFFINITY=compact,granularity=fine,1 \
-genv KMP_PLACE_THREADS=2T \
cp2k/exe/Linux-x86-64-intel/cp2k.psmp workload.inp

For an actual workload, one may try cp2k/tests/QS/benchmark/H2O-32.inp, or for example the workloads under
cp2k/tests/QS/benchmark_single_node which are supposed to fit into a single node (in fact to fit into 16 GB of memory).
For the latter set of workloads (and many others), LIBINT and LIBXC may be required.

https://github.com/cp2k/cp2k/tree/intel
https://www.cp2k.org/version_history
https://groups.google.com/d/msg/cp2k/xgkJc59NKGw/U5v5FtzTBwAJ
https://github.com/hfp/libxsmm
https://www.cp2k.org/version_history

The following script generalizes the example from above by scattering all ranks across the entire machine, and filling
each partition (rank) with threads accordingly. The variable NT denotes the number of threads per core with
MAXNT denoting whether Hyperthreading is enabled (2 or 4 depending on the kind of system) or not (1). Similarly
the MAXNCORES describes the maximum number of cores (not threads) available on a per node basis.
NUMNODES=1
MAXNCORES=32
NRANKS=8
MAXNT=2
NT=1

SHIFT=$((((2*MAXNCORES+NRANKS -1)/NRANKS)/2))
XRANKS=$((MAXNCORES/SHIFT))
if ["1" = "$((XRANKS <=NRANKS))"]; then NRANKS=${XRANKS}; fi
NTHREADS=$((SHIFT*NT))

mpirun -np $((NRANKS*NUMNODES)) -perhost ${NRANKS} -host localhost \
-genv I_MPI_PIN_DOMAIN=auto -genv OMP_NUM_THREADS=${NTHREADS} \
-genv KMP_AFFINITY=compact,granularity=fine,1 \
-genv KMP_PLACE_THREADS=${NT}T \
cp2k/exe/Linux-x86-64-intel/cp2k.psmp workload.inp

Please note that the threads are affinitized using the “scatter” strategy. With the “compact” strategy from the
previous example, the threads will be packed and an NT which is less than MAXNT would not work out with using
below idea. In contrast, the MPI process placement uses a stride (“SHIFT”) which makes sure to hit the correct core.
It is recommended to even treat a “POPT” build similar to a “PSMP” just in case that any linked library (which
uses internal OpenMP threads) will be optimally affinitized.

The CP2K/intel branch carries a number of “reconfigurations” and environment variables that allow to adjust impor-
tant runtime options. Most but not all of these options are also accessible via the input file format (input reference
e.g., http://manual.cp2k.org/trunk/CP2K_INPUT/GLOBAL/DBCSR.html).

• CP2K_RECONFIGURE: environment variable for reconfiguring CP2K (default depends on whether the
ACCeleration layer is enabled or not). With the ACCeleration layer enabled, CP2K is reconfigured (as if
CP2K_RECONFIGURE=1 is set) e.g. an increased number of entries per matrix stack is populated, and
otherwise CP2K is not reconfigured. Further, setting CP2K_RECONFIGURE=0 is disabling the code specific
to the Intel branch of CP2K, and relies on the (optional) LIBXSMM integration into CP2K 3.0 (and later).

• CP2K_STACKSIZE: environment variable which denotes the number of matrix multiplications which is
collected into a single stack. Usually the internal default performs best across a variety of workloads, however
depending on the workload a different value can be better. This variable is relatively impactful since the work
distribution and balance is affected.

• CP2K_HUGEPAGES: environment variable for disabling (0) huge page based memory allocation, which is
enabled by default (if TBBROOT was present at build-time of the application).

LIBINT and LIBXC Dependencies
To configure, build, and install LIBINT (Version 1.1.5 and 1.1.6 has been tested), one may proceed as shown below
(please note there is no easy way to cross-built the library for an instruction set extension which is not supported by
the compiler host). Finally, in order to make use of LIBINT, the key LIBINTROOT=/path/to/libint needs to be supplied
when building the CP2K application (make).
env \

AR=xiar CC=icc CXX=icpc \
./configure \

--with-cxx-optflags="-O2 -xCORE-AVX2" \
--with-cc-optflags=" -O2 -xCORE-AVX2" \
--with-libderiv-max-am1=4 \
--with-libint-max-am=5 \
--prefix=$HOME/libint/hsw

make
make install
make realclean

To configure, build, and install LIBXC (Version 3.0.0 has been tested), one may proceed as shown below. To actually
make use of LIBXC, the key LIBXCROOT=/path/to/libxc needs to be supplied when building the CP2K application (make).
env \

AR=xiar F77=ifort F90=ifort FC=ifort CC=icc \

http://manual.cp2k.org/trunk/CP2K_INPUT/GLOBAL/DBCSR.html
https://github.com/cp2k/cp2k/tree/intel
https://www.cp2k.org/version_history

FCFLAGS="-O2 -xCORE-AVX2" \
CFLAGS=" -O2 -xCORE-AVX2" \

./configure \
--prefix=$HOME/libxc/hsw

make
make install
make clean

If the library needs to be cross-compiled, one may add --host=x86_64-unknown-linux-gnu to the command line arguments
of the configure script.

Tuning
Intel Xeon Phi Coprocessor

For those having an Intel Xeon Phi coprocessor in reach, an experimental code path using CP2K’s ACCeleration
layer (which was originally built for attached accelerators) is able to offload computation from the host system.
However, the implementation leaves the host processor(s) unutilized (beside from offloading and transferring the
work). Please note that although the host is only MPI-parallelized, the coprocessor uses OpenMP within each
partition formed by a host-rank. For more details about affinitizing the execution on the coprocessor, one may have
a look at https://github.com/hfp/mpirun.
make ARCH=Linux-x86-64-intel VERSION=popt ACC=1 -j
mpirun.sh -p8 -x exe/Linux-x86-64-intel/cp2k.popt workload.inp

For more details about offloading CP2K’s DBCSR matrix multiplications to an Intel Xeon Phi Coprocessor, please have
a look at https://github.com/hfp/libxstream/raw/master/documentation/cp2k.pdf. Further, cross-building CP2K
for the Intel Xeon Phi coprocessor in order to run in a self-hosted fashion is currently out of scope for this docu-
ment. However, running through CP2K’s ACCeleration layer while executing on a host system is another possibility
enabled by the universal implementation. However, the code path omitting the ACCeleration layer (see Running the
Application) is showing better performance (although the code which is actually performing the work is the same).
make ARCH=Linux-x86-64-intel VERSION=psmp ACC=1 OFFLOAD=0 -j

Eigenvalue SoLvers for Petaflop-Applications (ELPA)

Please refer to the XCONFIGURE project (https://github.com/hfp/xconfigure), which helps to configure common
HPC software (and ELPA in particular) for Intel software development tools.

Memory Allocation Wrapper

Dynamic allocation of heap memory usually requires global book keeping eventually incurring overhead in shared-
memory parallel regions of an application. For this case, specialized allocation strategies are available. To use the
malloc-proxy of Intel Threading Building Blocks (Intel TBB), use the TBBMALLOC=1 key-value pair at build time of
CP2K. Usually, Intel TBB is just available due to sourcing the Intel development tools (see TBBROOT environment
variable). To use TCMALLOC as an alternative, set TCMALLOCROOT at build time of CP2K by pointing to TCMALLOC’s
installation path (configured with ./configure --enable-minimal --prefix=<TCMALLOCROOT>).

https://github.com/hfp/mpirun
https://github.com/hfp/libxstream/raw/master/documentation/cp2k.pdf
https://github.com/hfp/xconfigure#xconfigure
https://github.com/hfp/xconfigure/tree/master/elpa#eigenvalue-solvers-for-petaflop-applications-elpa

	CP2K Open Source Molecular Dynamics
	Getting the Source Code
	Build Instructions
	Running the Application
	LIBINT and LIBXC Dependencies
	Tuning
	Intel Xeon Phi Coprocessor
	Eigenvalue SoLvers for Petaflop-Applications (ELPA)
	Memory Allocation Wrapper

