next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

                        2 2    2      2     2     2          2 2         2 2
o2 = ideal (i*r - h*t, a w  - b x, f*k p - a , a*l m - w, a*e t  - m, h*i s 
     ------------------------------------------------------------------------
           2   2
     - o, d j*s x - 1)

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

             2 3 4 3 2    3 2 2 3 3   3 4 4 3 2    3   2 3 4   2 3 3 3 3 3  
o3 = ideal (b l n p r  - a c j q s , a m p s t  - g h*o r x , d e m n q r  -
     ------------------------------------------------------------------------
      3     3   4 4 3 2 2 4    3 4 2 2
     b c*o*p , f i j l q v  - c m p u )

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous.