next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

                          2           2           2    2        2     
o2 = ideal (k*p*s - a, b*p  - c*i, i*o  - c*v, e*g  - k x, g*v*w  - k,
     ------------------------------------------------------------------------
                   2 2      2
     c*i*q*v - n, h p  - e*f )

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

             3 3 4 4 3    3 4 3   2   4 3 4 2 2 3    2 2 3 3 
o3 = ideal (a e f o v  - b d i k*l , a j k o p x  - e l t w ,
     ------------------------------------------------------------------------
      3 3 2 2 2 4 3 4    3 2   4 2 4 2 3 3 4 4    2 3
     d f g j n q t v  - c s , j n o p s t u v  - e k )

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous.